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This thesis addresses the problem of data integration and interoperation of large-scale, 

widely distributed and independently maintained data, focusing on biological proteomics 

data which exemplifies the problem and has a practical need for better interoperation, and 

shows how such integrated data can be leveraged for important applications such as 

detailed cross-database queries in support of scientific exploratory data analysis and 

enhanced information retrieval. Semantic web RDF and RDF databases, which fit the 

problem well, are used to build two biological data integration systems 

called YeastHub and LinkHub. YeastHub is a lightweight semantic web data warehouse 

of joined RDF-formatted biological (yeast) data and allows RDF query access to it. 

LinkHub focuses on a high-level structuring principal or "scaffold" for biological data, 

storing biological identifiers (e.g. for proteins, genes, etc.) and the complex relationships 

among them as a large RDF directed labeled graph; LinkHub is used through web

interactive and query interfaces and also complements YeastHub. Through several non-

trivial RDF queries of the joined YeastHub and LinkHub data, we demonstrate that 

practical integrated biological data analysis can be achieved by basic, lightweight 

methods which don't attempt to solve the complete integration problem. 

A key focus of the LinkHub system is support for enhanced information retrieval 

of web documents and articles from the biomedical scientific literature (PubMed). We 
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attach documents to identifier nodes in the LinkHub RDF graph and provide for the 

flexible retrieval of the documents through queries of the RDF graph's relational 

structure. In addition, we use the LinkHub RDF relational data and attached documents 

as training sets to construct classifiers for document relevance ranking in support of 

enhanced automated information retrieval of web or biomedical scientific literature 

documents related to biological identifiers. The results of experiments done to 

empirically measure the performance of this enhanced automated information retrieval 

for proteomics (UniProt) identifier-related documents through the use of a manually 

curated bibliography of yeast protein-specific literature citations are presented.
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Chapter 1 Introduction and Overview of the Thesis

1.1 Integration and Interoperation of Large-scale, Distributed, 

Independently Maintained Data and its Application to Enhanced 

Information Retrieval

1.1.1 Classical Approaches to Integration and Interoperation: Data 

Warehousing and Federation

This thesis addresses the problem of integration and interoperation of structured, 

relational data with particular emphasis on situations where the data of interest is large-

scale, widely distributed and different parts of it are independently maintained by many 

different groups and persons. The thesis describes software systems which cross-

reference and integrate such data, manage and maintain it, and provide various interfaces 

to access it such as through query languages and web interactive interfaces; these systems 

enable important applications, which will be covered in more detail below, such as 

detailed cross-database queries in support of scientific exploratory data analysis and 

enhanced information retrieval or web search. Two well-known general approaches for 

integration and interoperation of data are data warehousing and federation[1]. 

Essentially, data warehousing involves combining multiple distinct databases or datasets 

(translating to common format and cross-referencing as necessary) into a single, central 

location, joined under a single unified schema, where they can be commonly accessed 

and queried. With federation, source databases maintain their integrity but provide all or 

part of their data in common, structured ways via APIs, XML dumps, etc. (or they 

provide some kind of standardized query access to it); the integrated view of all the data 
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is done by a “virtual database” process which accesses each source database to form a 

logical composite of all of them. For vast, widely distributed and independently 

maintained data which is the emphasis of this thesis, however, complete centralized 

integration of the data by traditional data warehousing is impractical and federation must 

be a part of any solution; we must somehow achieve partial and incremental integration 

in cooperative, loosely coupled ways by the independent maintainers of the data.

1.1.2 Integration and Interoperation Advantages of the Semantic Web: 

Standardization and Incremental Data Warehousing

The largest example of large-scale distributed data is the World Wide Web (or just “the 

web”) [2], but it does not consist of structured, relational data but rather of an enormous 

amount of unstructured, free-text data (i.e. web documents in HTML) on a myriad of 

topics. Given the heterogeneous and generally unstructured nature of the web’s content, 

and the web’s huge size, the current dominant paradigm for interacting with and finding 

things on it is by web search engines [3] which are effective at providing coarse-grained 

topical access to web content; hyperlinks are also a simple, commonly used but limited 

way to connect and cross-navigate web data. Search engines and hyperlinks, however, do 

not enable fine-grained cross-site analysis of data. The semantic web [4-6] being 

propelled by the World Wide Web Consortium or W3C [7] allows web information to be 

expressed in fine-grained structured ways so applications can more readily and precisely 

extract and cross-reference key facts and information from it without having to worry 

about disambiguating meaning from natural language texts. Standard and machine-

readable ontologies, which are formal specifications of the objects and their relationships 

and attributes in some domain[8, 9], are also created and their common use, reuse and 
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extension encouraged to further reduce semantic ambiguity.

Semantic web technologies are important for the data interoperation problems of 

this thesis because they support what might be termed incremental data warehousing as 

opposed to traditional data warehousing. Traditional data warehousing based on 

relational database technology requires as its first and most difficult and time-consuming 

task the creation of a single grand unifying schema to which all the source databases must 

be mapped. While such an approach can work well for corporations or other groups for 

which all source data is under internal, central control such an approach to integration of 

large-scale distributed and independently maintained data is impossible. In the extreme 

such an approach would be impossible for general interoperation of the vast amount of 

distributed data on the web of all types --- the primary goal of the semantic web 

technologies, in fact, is to support such interoperation of distributed web data.

RDF [10] is the core technology of the semantic web and it is used for the systems 

described in this thesis. RDF models data as a directed labeled graph where the graph’s 

nodes and edges are named by URIs [11] and it makes no a-priori assumptions (beyond 

nodes and edges being named by URIs) about constraints on the graph. The RDF graph’s 

edges or “triples” consist of one node, a directed edge from that node, and another node 

(or a scalar value) pointed to by the edge (see figure 5b for a simple example RDF 

graph). RDF is similar to relational modeling in that both store and manage relationships 

among entities (RDF and relational modeling in fact have equal modeling power, and 

systems such as D2RQ [12] can convert between them; also, e.g., RDF can be stored in 

relational databases in a “triples” table as can be done in RDF databases such as Sesame 

[13]). The key difference is that relational modeling requires that all data be structured 
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into different tables and typed through a predefined schema (relational modeling thus has 

a closed world assumption about data), whereas RDF does not require such a priori 

typing or structuring of data (RDF thus has an open world assumption about data1). Thus,

no actual instance data can be inserted into a relational database unless a schema has been 

used to define precisely the structure and typing of the database, whereas no such 

predefined schema is necessary for RDF databases and RDF triples of any types of

objects and relationships can be inserted at will into them. A predefined schema does 

enable efficient query execution by allowing fine-grained index structures to be pre-built, 

but this comes at the expense of flexibility and effective index structures can still be built 

for RDF. The fact that edges (or relationships or properties), in addition to nodes, in RDF 

are uniquely nameable by URI (i.e. they are so-called “first class objects”) is also 

noteworthy and enables truly distributed data structures where anyone can make 

statements about any object [14].

While RDF is open and flexible it is nevertheless possible to define structure and 

constraints on it through the use of the higher level semantic web technologies RDF 

Schema (RDFS) [15] and Web Ontology Language (OWL) [16], and the use of these can 

allow one to achieve, and in fact go beyond, the modeling power of relational databases -

-- the key is that there is a spectrum of levels of structure and constraints that one can 

specify for RDF data. It is precisely this spectrum that enables incremental data 

warehousing, where one can specify just the partial (or none) structure and constraints 

that are known, leaving the rest for later, and still be able to effectively integrate, store 

                                                
1 Note that given the huge and distributed nature of the web (which the semantic web aims to be part of), 
the open world assumption of semantic web technologies including RDF is necessary and a closed world 
assumption would be impossible or impractical; also, the open world assumption is important for 
promoting flexible and independent ontology reuse and extension.
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and use data. This spectrum is in fact an important principle explicitly supported on the 

semantic web, called the principle of least power which says essentially to use the 

simplest technology that will achieve your goals; i.e. powerful, expressive languages 

inhibit information reuse while simple but useful ones support it [17]. Thus, the systems 

built and described in this thesis are able to use the semantic web to make valuable partial 

and incremental progress towards practical data interoperation without having to solve 

the entire problem at once.

Data warehousing, even the incremental type enabled by the semantic web, 

nevertheless still involves centralized integration and storage of data. However, it is 

impractical to consider data warehousing, even in limited, partial ways, as the complete 

solution for integration of large-scale widely distributed and independent data. It is 

assumed that no single person or group can have knowledge of all the data or the 

requisite large resources and time necessary to collect it together into one location: there 

is simply too much of it and it is growing too fast. At least some federation will have to 

be part of the solution and we thus must accept and rely on individuals and groups 

independently releasing data. The only practical way this can lead to some level of 

global, federated integration is if they all release their data using common standards: 

standards and their widespread use enable independent, loosely coupled cooperative 

integration. It would be counterproductive to invent new standards if not necessary, and 

in fact the goals of this thesis are a very good fit to the semantic web. The semantic web 

is strongly supported by the W3C and it is increasingly gaining traction as a key platform 

for data integration, particularly for biological data which is the domain of investigation 

of this thesis as described below.
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1.1.3 Hybrid Data Warehousing and Federation

This thesis advocates a combined, hybrid federation and data warehousing approach. A 

warehousing approach is best both for large, well-known and important databases and 

also in small, local contexts (e.g. all of a lab’s resources, sets of resources on common 

topics, etc.): the warehouse of large, important, well-known databases can serve as core 

“backbone” content (i.e. major hubs of data) to which the smaller, local warehouses can 

connect in a federated fashion, thus enabling global integration of data in an efficient 

loosely coupled, cooperative way. Efficiency is gained both by eliminating the need for 

all single source datasets to be individually connected to one another directly (efficiency 

is gained through the indirect connections to the major hubs) or each directly to the major 

hubs (the small, local warehouses make a single connection on behalf of all their 

contained datasets).

1.1.4 Information Retrieval and Web Search Enhanced by the 

Semantic Web

As discussed above, the web and the semantic web are two opposing models for web 

data, with the web being maximally flexible by consisting of unstructured, free-text data 

while the semantic web prescribes web data to be expressed in fine-grain structured ways. 

Search engines are the dominant paradigm for indexing and retrieving web data and 

documents, while query languages (e.g. the proposed standard RDF query language 

SPARQL [18]) and inferencing engines (e.g. Racer for reasoning with OWL [19]) are 

how semantic web data is accessed and used. In the search engine paradigm one tries to 

get computers to automatically extract meaning and facts from unstructured texts, 

whereas the semantic web takes the stance that this is not a panacea and we need to 
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encourage people to disseminate their information and data in a more precise and 

structured way.

The two approaches basically have inverted strengths and weaknesses. Search 

engines, because they are fully automated, can achieve vast, close to complete coverage 

of the web and they allow people to disseminate their content in natural language texts 

without requiring them to learn possibly arcane data structuring languages and 

techniques; the key drawback is that, because it is currently too difficult to get computers 

to extract any detailed meaning from unstructured texts, the level of precision in 

information requests achievable by search engines is quite limited. The semantic web, on 

the other hand, allows information and data to be expressed and queried very precisely, 

and its ontologies promote cooperation and further reduce ambiguity in meaning. The 

drawback of the semantic web is that, to achieve this fine grain information modeling 

humans must change the way they create their content to conform to very precise 

structures, and this is a hindrance to widespread dissemination of semantic web content; 

consequently the semantic web is still fairly small and it is arguable whether it will ever 

gain traction and become on par with the standard web.

Currently, the search engine and semantic web worlds are generally separate and 

do not interact with or make use of each other’s technology. As discussed above, the 

search engine and semantic web worlds largely have strengths and weaknesses that are 

complementary, with a weakness in one being a strength in the other. This thesis 

proposes that these two approaches to web data management and retrieval can work 

together and complement one another and that there are interesting, practical, and useful 

ways the semantic web and search engine worlds can work with, leverage, and enhance 
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each other; in particular, the thesis explores how semantic web data can be used to 

enhance information retrieval or web search. The basic idea is that the semantic web 

provides detailed information about standard terms and their interrelationships, and, 

importantly, unstructured web documents can be annotated with those terms as metadata.  

The terms, their relationships, and the documents that they annotate provide copious

information to perform precise information retrieval or web search for free-text 

documents relevant to those terms (and related terms). This will be explained more 

concretely below in the biological context. In the future when the semantic web becomes 

more widespread and structured, relational data about various concepts of interest 

becomes widely available and easily accessible, web searchers can piggyback on this 

wealth of preexisting semantic web data, picking and choosing standard terms and their 

relational subgraphs as they like to use in improving document retrieval. Since search is 

widely perceived to be such a crucial web application the semantic web’s ability to 

improve search could be of high practical value and an important driving force to help 

more fully realize the vision of the semantic web. Integration and interoperation of data 

such as terms, relationships, and annotated web documents are a prerequisite for this 

vision, however, and this thesis builds practical software systems to support it.

1.2 Biological Data

The data domain of focus in the thesis is biological data, with an emphasis on proteomics 

data. Biological research is producing vast amounts of data, e.g. from high throughput 

experiments such as genome DNA sequencing projects and DNA microarray 

experiments, at a prodigious rate. Most of this data is made freely available to the public, 

and this has created a large and growing number of internet and web-accessible 
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biological data resources which are characterized by being distributed, heterogeneous, 

and having a large size variance, i.e. huge, mega-databases such as UniProt [20] and 

GenBank [21] down to medium, small or “boutique” databases (e.g., Pfam [22], SGD 

[23] and TRIPLES [24]) generated for medium / small scale experiments or particular 

purposes. Biological data thus closely matches the above stated emphasis of the thesis 

and, in addition, there is a pressing practical need to be able to interoperate across it, at 

least in basic ways, e.g. to better support computational drug discovery. Biological data is 

also a good domain to work in because it strikes a good balance for complexity of the 

problem: it is not excessively complex but is still complex enough to be interesting with 

the potential to achieve useful practical results.

1.3 Interoperation of Biological Data

1.3.1 LinkHub and YeastHub

This thesis presents a software architecture and prototype system called LinkHub inspired 

by the hybrid warehousing and federation approach discussed above. The LinkHub 

prototype, accessible at either http://hub.gersteinlab.org or http://hub.nesg.org, is 

practically used to connect together a number of proteomics and related web resources 

(providing a single point of entry to them all) and connect them all to the major 

proteomics hub UniProt (see figure 4). The full integration problem is very difficult, 

however, and could require too much background knowledge of database owners and be 

too complex for people to bother with, and this could inhibit interoperation of proteomics 

data. If we must rely on cooperative, loosely-coupled integration, which is the position 

this thesis takes, then practically we must make our integration mechanisms and 
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standards as simple as possible, otherwise we risk people not using them. LinkHub does 

not attempt to solve the complete integration problem for biological data, but instead 

focuses on a basic but important, high-level structuring principle for biological 

knowledge, namely identifiers for biological entities (e.g. proteins and genes) and the 

relationships (and relationship types) among them. Together the identifiers and their 

relationships form a large directed graph, and this graph serves as an essential “scaffold” 

to which other types of proteomics data can be linked and interoperated across (see figure 

3 for a conceptualization of this graph). In particular, access to additional attributes and 

data for biological identifiers is through hyperlinks to identifier-specific pages, where 

these hyperlinks are linked to identifiers’ nodes in the graph. LinkHub is a system for 

storing, managing, and exploring, via web interactive interfaces and query languages, 

such identifiers and their relationships, and identifier node-linked data. The basic 

conceptual underpinnings of LinkHub, i.e., the importance of biological identifiers and 

connecting biological databases by linking them, was given in [25] and LinkHub is a 

practical system based on and extending these ideas.

While LinkHub is a free-standing system useful on its own as just described, it 

also serves a complementary role to another system described in this thesis called 

YeastHub [26]. YeastHub was begun before LinkHub and it attempted to address data 

integration more generally by transforming datasets to a common RDF format and storing 

and providing query access to them all together through an RDF database and RDF query 

languages; YeastHub was essentially a lightweight data warehouse for yeast and other 

genomic data, based on and using semantic web technologies and serving as a test bed for 

integrated yeast and genomic data analysis through semantic web technologies. The 
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problem with YeastHub, however, was that, although it was able to co-integrate many 

disparate datasets the integration was thin --- the key was numerous and varied 

connections among the integrated datasets and these were limited in the original 

YeastHub system. This is precisely the role that LinkHub plays, and it is thus useful and 

complementary to YeastHub as a “connecting glue” among the datasets in that it makes 

and stores these cross-references and enables improved integrated access to the YeastHub 

data. Access to the combined YeastHub / LinkHub data, which is stored in the Sesame 

RDF database [13] is by RDF query languages. We give demonstration queries below 

written in SeRQL (Sesame’s query language related to RQL) [27] to show one can 

effectively do the kinds of interesting preliminary scientific investigation and exploratory 

analysis commonly done at the beginning of research initiatives (e.g. to see whether they 

are worth pursuing further). These queries make use of information present in both 

YeastHub and LinkHub (and thus could not be done without joining the two systems), 

and, again, LinkHub is used as ‘glue’ to provide connections (both direct and indirect) 

between different biological identifiers. It is noteworthy that the demo queries roughly 

duplicate some results from published papers; taking advantage of the combined 

YeastHub and LinkHub data the queries can be formulated and run to get results in at 

most a few hours, which is in stark contrast to the extensive effort (days or weeks) likely 

required for the papers to manually integrate the necessary data to achieve their results.

1.3.2 Ontology Alignment of Biological Identifiers in LinkHub

Data warehousing and federation, while important, deal with issues such as the physical 

location and organization of integrated data (i.e. centrally located versus distributed) and 

what gets translated (i.e. data or queries). However, a separate, more fundamental issue in 
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interoperation is determining what the relevant entities are and the attributes and 

properties they possess. This is precisely what formal ontologies are for, and ontologies 

are what the various languages and technologies of the semantic web, such as RDF, 

RDFS and OWL, are meant to allow one to create. An important remaining problem not 

solved directly by the formal ontology building standards of the semantic web is the 

problem of ontology alignment [28-30]: how to map the entities and concepts in one 

independent ontology to equivalent or similar entities and concepts in another 

independent ontology.

Ideally, the ontology alignment problem would not arise: everyone would agree 

on the relevant terms, relationships, and attributes and what they all mean and would use 

only them, so there would be no need for such mapping. However, practically the 

problem does arise in spite of the fact that ontology reuse is strongly encouraged. 

Because the semantic web deals with huge, distributed, independently maintained data, 

different groups and people will independently invent and use their own ontologies, and 

terms and relationships and properties for the same underlying essential concepts can be 

reinvented many times in different ways. It is also impractical to rely on a single, grand 

unifying ontology: it is very difficult to create, maintain, and use very large ontologies

(although people have certainly tried, exerting much time and effort towards creating 

them, most notably in the CYC project [31]) and it is more practical to use smaller, 

partial ontologies that can deal with your particular problem. People also simply see the 

world differently, and will structure their data consistent with how they view the data’s 

particular domain, which can often be different than how another person views the same 

domain. It is also arguable whether it even makes sense to try to “force” one particular 
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view or ontology on data. A recent trend on the web is for “organic organization” through 

tagging or folksonomy systems such as del.icio.us [32] and Connotea [33] where users 

independently assign multiple, free form textual tags to web pages and other items of 

interest, thus allowing multiple different views on the same data to emerge by the 

collaborative efforts of many users; in effect, the ontologies used to annotate web pages 

and other objects in such tagging systems are an emergent property of the independent 

actions of the many users, and one can look for interesting relationships among the terms 

(e.g. which terms co-occur often, etc.), in effect doing a kind of ontology mapping [6, 

34]. In any case, there is a need for ontology alignment on the semantic web [29]

A commonly used basic technique for ontology alignment in general is to do 

some kind of string matching [35], e.g. if one dataset identifies some object as “056-94-

8945” and another as “056948945” then we might infer they refer to the same object (i.e. 

the same person with the given social security number). Biology is blessed with a 

fundamental, commonly accepted principle around which data can be organized, namely 

biological sequences such as DNA, RNA, and protein, and various string matching 

techniques for biological sequences (see appendix A for some details) can solve a large 

part of the ontology alignment problem in biology. LinkHub uses such string matching of 

biological sequence for its ontology alignment problems. In particular, for LinkHub, how 

can we determine that two biological identifiers refer to the same entity (i.e. are 

synonyms for that entity) or that the identifiers are related and what the relationship type 

is? Again much biological data can be effectively organized around biological sequences 

and LinkHub takes advantage of this.
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LinkHub incorporates the full UniProt database and uses it as “backbone” content. 

The large UniProt staff performs manual mapping (using biological sequence matching to 

automate or semi-automate much of the process) of biological identifiers for large, well-

known databases, mapping UniProt protein sequence identifiers to other important 

databases such as PFAM [22] (protein domains or modules which occur in many species’ 

proteins by evolution), GO [36] (standard taxonomy of terms for annotating protein and 

gene function), and PDB [37] (protein 3-D structure). LinkHub can directly take 

advantage of UniProt’s many inter-database mappings by mapping the sequences for its 

own identifiers to UniProt’s sequences (UniProt identifiers are keys to records which 

contain much information about the proteins, such as their sequence, sequence properties, 

and of course the cross-references to other identifiers in other biological databases). This 

also would allow indirect connections to be made to other small databases (or other 

LinkHub instantiations) which themselves linked their identifiers to UniProt’s --- in fact 

this kind of indirect mapping is how global interoperation among biological databases 

can be achieved in a cooperative, loosely-coupled way. LinkHub focuses on exact 

sequence matching, which is conservative and guarantees that two identifiers referring to 

exactly matched sequences are referring to exactly the same entity. Non-exact matching 

sequences which nonetheless still share much sequence identity are handled by 

connections through PFAM; UniProt maps its identifiers to PFAM domain identifiers, 

and LinkHub proteins indirectly map to PFAM identifiers through their connections to 

UniProt (and thus two proteins which both map to the same PFAM identifier indirectly 

through connections to UniProt identifiers are evolutionarily related, i.e. share a common 

domain and are members of the same family). While UniProt is a primary source for 
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identifier mappings, when available LinkHub also similarly takes advantage of other 

identifier mappings that have been precomputed (e.g. mapping of pseudogenes to 

UniProt). Finally, for relationship types LinkHub tries to be flexible and, similar to 

folksonomy tagging systems, does not force the use of any given ontology but allows the 

relationships between identifiers to be specified with free text such as “family mapping” 

or “functional annotation” (although the free text could be used to specify formal terms in 

an ontology); LinkHub could also be said to favor and support shallow ontologies as 

opposed to deep ontologies [6]. More details of LinkHub’s identifier mapping methods 

will be given in chapter 4.

1.4 LinkHub enables Enhanced Information Retrieval

A key theme of this thesis is providing enhanced information retrieval to unstructured, 

free-text data (e.g. the scientific literature of journal and conference articles, web pages, 

etc.) using the information present in the graph of identifier relationships and identifier 

node-linked documents that are stored in LinkHub. The most common and prevalent 

access to free text documents is currently by search engines, i.e. where users enter words 

they want to search for and the search engine returns documents that contain those terms 

many times and in prominent locations or lexically close together, etc. Google [38] and 

Yahoo [39] are the most well-known general purpose search engines for web content, and 

PubMed [40] provides such keyword-based search access to the biomedical scientific 

literature (Medline). However, while such keyword-based search access to free text 

documents often works well and is sufficient to produce a user’s desired information, 

there are other important cases where it does not. In fact, simple keyword-based search 

lacks precision and can return millions of documents with poor ranking, and this was a 
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big problem with early web search engines; it was Google’s solution to this problem [41]

of effective ranking of huge result sets, using hyperlinks as “votes” of importance for 

linked to pages, which made Google the de-facto only web search engine most web 

surfers use today. 

Even if you can rank large result sets well there are certain queries that cannot be 

done by keyword-based search engines. For example, imagine the conceptual query 

“Return to me all documents containing information for proteins which are members of 

the Pfam Adenylate Kinase (ADK) family.” You could not directly do this query with 

just keyword-based search access. You could imagine entering terms “Pfam”, 

“adenylate”, and “kinase” which might get you some of the relevant documents but in a 

jumbled order, and would also return unrelated or more generally related documents (e.g. 

a page generally describing what kinases are, what Pfam is, etc.) What the query is really 

asking for is to first determine the proteins which are members of the ADK family, and 

then find the relevant documents for each of these separately, and combine all these into a 

single result set; the initial part of this query, determining proteins in Pfam family ADK, 

requires access to relational information about family memberships of proteins and then 

finally a search for documents relevant to these proteins can be done. However, even 

when the individual proteins in the ADK family are known, keyword-based search will 

likely not be very effective at returning relevant documents for these proteins. Proteins, 

being important biological entities, are referred to by identifiers and because of conflated 

senses of the identifier text, identifier synonyms, and in general a need to consider and 

query for the key related concepts of the identifier, simple search for protein identifiers 

will likely not return good results (or, at the very least, suffer the standard problem of 
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returning millions of results with poor ranking).

This thesis shows how the relational data in the LinkHub graph of identifier 

relationships can be used for enhanced information retrieval. Recall that LinkHub stores a 

graph of identifiers and their relationships, where hyperlinks to web documents are linked 

to identifier nodes in the graph. The key point of the ADK family query above was that it 

required access to relational data about proteins’ family memberships, in addition to 

keyword-based search techniques. LinkHub provides a special query access to the graph 

that allows one to flexibly retrieve useful subsets of web documents (which are linked to 

identifier nodes in the graph) based on the relational structure of the graph, and this 

supports queries such as the ADK example which are partly relational in nature.

The thesis also shows how enhanced, automated retrieval of documents from the 

web or scientific literature related to proteomics identifiers can be done using the 

LinkHub graph. The key idea is that the LinkHub subgraph emanating from a given 

identifier and the web pages (hyperlinks) linked to the identifier nodes in that subgraph 

provide copious and detailed information about the given central identifier that can be 

used to perform precise and accurate relevant document retrieval for it. The web pages 

linked to the identifiers’ nodes in the subgraph are considered to be a “gold standard” for 

what additional relevant documents should be like. These identifier node-linked web 

pages are used as training sets to construct ranking functions, in particular a combined 

word weight vector of all of the web pages (where each of them is weighted to indicate 

how relevant they are to the central identifier). This combined word weight vector 

ranking function is used to score and rank additional documents (obtained from the web 

or scientific literature) for how well they match the training set (and hence the central 
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identifier).

The thesis also proposes a novel step in information retrieval, called the pre-

inverse document frequency step (or just pre-IDF step), which is shown to greatly 

increase document relevance ranking accuracy (section 5.3 below covers inverse 

document frequency and other basic techniques of information retrieval). This step takes 

advantage of the fact that, for a given identifier for which we want to retrieve relevant 

documents, we not only know that identifier’s subgraph and the documents linked to 

identifier nodes in that subgraph, but we also know the subgraphs and subgraph identifier 

node-linked documents for many other identifiers of the same type (e.g. we know the 

subgraphs and identifier node-linked documents for all the UniProt proteins). In essence, 

the pre-IDF step takes advantage of this “big picture” information to maximally separate 

the word weight vectors of all documents of the same type while at the same time making 

them as specifically relevant and discriminating as possible. Finally, linking

automatically retrieved documents to the identifier nodes of the identifier for which they 

were retrieved can further enhance the utility of information retrieval queries that use the 

relational structure of the LinkHub graph (i.e., like the ADK example), since this makes a 

larger set of free-text documents available for retrieval (LinkHub initially only links a 

small number of hyperlinks to identifier nodes).

1.5 Organization of the Thesis

Given the preceding high-level overview of this thesis, the remainder of the document is 

organized as follows. Chapter 2 will present a particular, exemplary proteomics data 

mining analysis, predicting the tractability of proteins for experimental three dimensional 

structure determination from known sequence-based features. This is given to 
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demonstrate the kinds of problems computational proteomics analysis can address and 

the data used for it; Appendix 1 contains some more detailed background information 

which can be read before chapter 2 if desired: an overview of proteomics and proteomics 

databases, and an overview of some representative and important computational 

proteomics problems. The presentation of this data mining analysis in chapter 2 motivates 

the problem of a need for better interoperation of proteomics data, since a large part of 

the analysis was spent simply manually assembling the dataset to perform the analysis, 

which is addressed by the YeastHub system described in chapter 3. In particular, chapter 

3 will first discuss the challenges to data interoperation, general approaches to data 

interoperation, and the semantic web approach to data interoperation before finally 

describing the YeastHub system in detail. In building YeastHub there were still some 

important remaining issues that it didn't address that we identified, the most important 

one being a dearth of connections and relationships among the datasets integrated in 

YeastHub, and this served as a motivation for the LinkHub system which is the subject of 

chapter 4. Chapter 4 will cover the main idea behind LinkHub, the concept of biological 

identifiers and the relationships among them forming a large graph that is an important 

“scaffold” of biological knowledge and data. Chapter 4 will present the details of 

LinkHub, including its RDF and relational data models, how it handles ontology 

alignment (i.e. the relationship mapping) of biological identifiers, its web interactive and 

query interfaces, and its combination with YeastHub to better enable useful scientific 

exploratory data analysis of proteomics data (example queries of the combined YeastHub 

/ LinkHub system will be demonstrated). Chapter 4 will also discuss how LinkHub 

enables novel information retrieval based on the LinkHub relational graph structure to 
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web documents linked to identifier nodes in the graph. Chapter 5 will cover the enhanced 

automated information retrieval aspects of LinkHub, in particular how LinkHub 

relational subgraphs can be used as training sets to construct ranking functions for 

document relevance ranking for identifier-related documents (appendix 2 lists the top 20 

results of a LinkHub-based search of PubMed for documents related to a UniProt 

proteomics identifier). An overview of basic techniques in information retrieval, and the 

details of the pre-IDF step, will also be given. The results of experiments done to 

empirically measure the performance of the enhanced automated information retrieval for 

identifier-related documents through the use of a manually curated bibliography of yeast 

protein-specific literature citations will be presented. Finally, chapter 6 will conclude by 

summarizing the key points and contributions of the thesis in the context of related work, 

and give some possible future directions for research.
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Chapter 2 Structural Genomics Data mining as a 

Motivating Problem for Proteomics Data Interoperation

2.1 Structural Genomics Data mining: Predicting Tractability of 

Protein Targets for Experimental Structure Determination

Appendix 1 contains an overview of proteomics and important proteomics databases, and 

covers a sample of important and representative problems in computational proteomics; 

appendix 1 can be read to obtain background knowledge for this chapter. This chapter

will focus on a particular, exemplary proteomics data mining problem, predicting the 

tractability of proteins for experimental three dimensional structure determination from 

known sequence-based features. This is given to more fully present the kinds of problems 

computational proteomics analysis can address and the data used for it, and it motivates 

the problem of the need for better interoperation of proteomics data, which will be 

addressed by the YeastHub system in chapter 3, since a large part of the analysis was 

spent simply manually assembling the dataset to perform the analysis.

Structural genomics is a government sponsored initiative funded by the NIH to 

efficiently solve 3-D structures of representatives of protein families at high throughput 

using the experimental techniques of crystallography and nuclear magnetic resonance 

(these are two, somewhat complementary, experimental techniques for solving structures)

[42-44]. The Gerstein Lab participates in one of the government-funded structural 

genomics centers, the Northeast Structural Genomics Consortium or NESG [45], and has 

the role of handling the information infrastructure and performing data management for 

it, most notably by maintaining the SPINE internal NESG target tracking database [46]. 
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SPINE data is also fed into and is part of the public TargetDB structural genomics 

tracking database [47]. Another role of the Gerstein Lab in the NESG is to perform data 

mining of structural genomics data (from SPINE and/or TargetDB and PepcDB [48]) to 

understand and improve the process. In particular, solving a protein’s structure 

experimentally takes much time and resources, and there is no guarantee of success (a 

large number of protein targets are abandoned after a number of steps of the experimental 

determination pipeline because they are found to be intractable for some reason). If we 

could better predict which protein targets are more likely to be successful ahead of time, 

then we could focus on these and there would be less waste of resources and time spent 

on “dead end” proteins; this was a key motivation for this structural genomics data 

mining analysis.

Proteins in structural genomics go through a lengthy pipeline of experimental 

stages towards 3-D structure determination; the standard pipeline stages as defined by 

TargetDB for crystallography are: Selected  Cloned  Expressed  Soluble 

Purified  Crystallized  Diffraction-quality Crystals  Diffraction  Crystal 

Structure  In PDB. The pipeline for NMR based solution is the same except the 4 

stages before In PDB are replaced by: NMR Assigned  HSQC  NMR Structure. 

Other statuses that can be assigned to TargetDB protein targets are Work Stopped, Test 

Target, and Other. TargetDB, then, provides status data (i.e. which stage in the pipeline 

a protein has reached, dates for reaching various stages and statuses, etc.) for all targets of 

the NIH-funded structural centers (this is a requirement of the centers’ funding) and also 

from other US and international efforts who voluntarily provide the data to TargetDB for 

their targets. TargetDB was the primary database used in the data mining analysis, and 
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the basic idea of the analysis was to find protein sequence-based features (which could be 

determined or accurately predicted from only protein sequence data, which is thus known 

ahead of time before a protein enters the structure determination pipeline) that were 

predictive of success in TargetDB. I.e. which features differentiated proteins that were 

successful at having their structures solved versus those which were not, and for each 

pipeline stage which features were predictive of proteins reaching the next stage versus 

proteins which did not reach the next stage?

The protein sequence-based features which were considered include:

 The percentage composition of particular amino acids and groups of chemically 

similar amino acids (charged, hydrophobic, etc.)

 The length of the protein.

 Whether the protein is a member of a COG (“Cluster of Orthologous Groups” ---

a separate database [49]).

 Whether a protein had or was predicted to have binding partners or be in a protein 

complex (i.e. was part of a protein-protein interaction). The MIPS complex 

catalog [50] and a number of other datasets were the source of the interaction 

information.

 The protein’s isoelectric point (pI).

 Hydrophobicity scores as measured using the GES scale [51].

 Presence of motifs from the PROSITE database [52].
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 Presence of nuclear localization signals and other signal sequence patterns (e.g. 

presence of charged amino acid in first 7 amino acids followed by 14 hydrophobic 

amino acids).

 Entropic low-complexity sequence scores calculated using the SEG program [53].

 Secondary structure: percentage of amino acids in helix, beta sheet, and coil 

regions.

We thus constructed a dataset of the above features and pipeline statuses for all 

the structural genomics targets in TargetDB and used machine learning to construct 

classifiers for predicting structural genomics tractability for proteins. In particular, we 

used decision trees as the classifier model because they give reasonable performance 

and, more importantly, they are easily interpretable unlike other machine learning 

models such as neural networks and support vector machines which are essentially 

black boxes; for decision trees, easily understandable “if-then” rules can be extracted 

and used. Interpretability of what were the important features was an important goal 

of the analysis, and decision trees fit this goal. The random forest algorithm is a 

decision tree based method based on bootstrap aggregating (“bagging”) and random 

feature selection which is a robust way of finding the strongest, most predictive

features, and we used it to perform feature selection. Decision trees were then 

constructed using the features selected by the random forest analysis.

The overall results of the analysis found the following features to be the most 

important predictors of successful structural characterization:
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 Conservation across organisms (i.e. presence in a COG). This is likely because 

larger protein families are more studied. It also makes it more likely there will be 

an amenable bacterial representative in the family (the cloning and expression 

experimental stages are generally done in bacteria), or maybe simply that there 

will be multiple proteins from the family you can try until you eventually hit on 

one that happens to work.

 Hydrophobicity. This is likely because highly hydrophobic proteins are less 

soluble, and so are more likely to fail the solubility stage.

 Presence of charged amino acids. This is likely because more charge improves 

solubility.

 Number of binding partners. A protein that has binding partners likely requires 

them to be present in order to fold correctly and thus be crystallizable, and these 

partners would not be present in the structural genomics pipeline.

It was thought that the following features would be important, but in the end 

they were found not to be:

 Low complexity sequences. Low complexity sequences probably won’t fold well 

and this would seem to be a predictor of intractability. However, it is likely low 

complexity sequences were filtered out during target selection.

 Presence of nuclear localization signal motifs. The presence of such signals 

indicates a secreted protein which structural genomics does not consider (they 

aren’t targeted).
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 Percentage of lysine and arginine amino acid. These are charged amino acids, 

so it was plausible to think they would aid solubility and be good predictors, but 

they did not turn out to be.

The full details of this structural genomics data mining analysis are in [54]. The 

important point for this thesis is that the analysis required extensive time and effort just to 

assemble the dataset, likely consuming a majority of the total time and effort spent. A 

number of different datasets had to be found, understood, and combined, and a number of 

external programs had to be run to calculate certain features. Bioinformatics researchers 

have to do this kind of time-consuming manual integration of data all the time. This was 

one of the motivations for the work in this thesis, to come up with practical and workable 

solutions for integrating biological data and enabling data interoperability to support 

efficient creation of datasets, so researchers can spend most of their time where it is most 

useful, actually doing their analysis. The next chapter will cover a system called 

YeastHub, a data warehouse for integrating and querying biological data based on 

semantic web technologies, which attempts to address such issues.
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Chapter 3 YeastHub

This chapter describes the challenges involved in the integration of databases storing 

diverse but related types of life sciences data. A major challenge in this regard is the 

heterogeneity of life sciences databases. There is a strong need for standardizing 

representations of life sciences data, both syntactically (i.e. encouraging the use of 

standard data formats such as XML) and semantically (i.e. precisely defining the meaning 

of terms and their relationships, and encouraging their widespread use). This thesis 

addresses the need for such standardization by using the emerging semantic web 

technologies based on the Resource Description Framework (RDF) standard. This 

chapter presents a system called YeastHub [26] which demonstrates how to use the latest 

RDF database technology to build a data warehouse that facilitates integration of life 

sciences data.

3.1 Background

With the popularity and ubiquity of the World Wide Web a large quantity of biological 

data has been made available to the scientific community through the Internet. A 

multitude of web accessible biological databases have emerged. These databases differ in 

the types of biological data they provide, ranging from sequence databases (e.g., NCBI’s 

GenBank [21]), microarray gene expression databases (e.g., SMD [55] and GEO [56]), 

pathway databases (e.g., BIND [57], HPRD [58], and Reactome [59]), and proteomic 

databases (e.g., UPD [60] and PeptideAtlas [61]). While some of these databases are 

organism-specific (e.g., SGD [23] and MGD [62]), others like (e.g., Gene Ontology [36]

and UniProt [20]) are relevant irrespective of taxonomic origin. In addition to data 
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diversity, databases vary in scale ranging from large global databases (e.g., UniProt), 

medium boutique databases (e.g., Pfam [22]) to small local databases (e.g., PhenoDB

[63]). Some of these databases (especially the local databases) may be network-

inaccessible and may involve proprietary data formats.

Fig. 1. Number of databases published in the NAR Database Issues between 1999 and 2005.

Fig. 1 indicates the rate of growth in the number of web-accessible molecular biology 

databases which were published in the annual Database Issue of Nucleic Acids Research 

(NAR) between 1999 and 2005. These databases only represent a small portion of all 

biological databases in existence today. With the sustained increase in the number of 

biological databases, the desire for integrating and querying combined databases grows. 

Information needed for analysis and interpretation of experimental results is frequently 

scattered over multiple databases. For example, some microarray gene expression studies 

may require integrating different databases to biologically validate or interpret gene 

clusters generated by cluster analysis [64].

 For validation, the gene identifiers within a cluster may be used to retrieve sequence 

information (e.g., from GenBank) and functional information (e.g., from Gene 
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Ontology) to determine whether the clustered genes share the same motif patterns or 

biological functions, 

 For interpretation, such gene expression data may be integrated with pathway data 

provided by different pathway databases to elucidate relationships between gene 

expression and pathway control or regulation. 

3.2 Data Interoperation Challenges

Below the challenges faced when integrating information from multiple databases are 

reviewed:

 Locating Resources. Automated identification of websites that contain relevant and 

interoperable data poses a challenge. There is a lack of widely-accepted standards for 

describing websites and their contents. Although the HTML meta tag 

(http://www.htmlhelp.com/reference/html40/head/meta.html) can be used to annotate 

a web page through the use of keywords, such tags are problematic in terms of 

sensitivity and specificity. Furthermore, these approaches are neither supported nor 

used widely by existing web search engines: most web search engines rely on using 

their own algorithms to index individual websites based on their contents.

 Data Formats. Different web resources provide their data in heterogeneous formats. 

For example, while some data are represented in the HTML format, interpretable by 

the web browser, other data formats including the text format (e.g., delimited text 

files) and binary format (e.g., images) are commonplace.
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 Synonyms. There are many synonyms for the same underlying biological entity as a 

consequence of researchers independently naming entities for use in their own 

datasets or because of legacy common names (such as the famous “sonic hedgehog” 

gene name) arbitrarily given to biological entities before large-scale databases were 

created. Such names have managed to remain in common use by researchers. An 

example of this synonym problem is the many synonymous lab-specific protein 

identifiers used to identify proteins (e.g. the structural genomics centers all give their 

own names to proteins). There can also be lexical variants of the same underlying 

identifier (e.g., GO:0008150 vs. GO0008150 vs. GO-8150). 

 Ambiguity. Besides synonyms, the same term (e.g., insulin) can be used to represent 

different concepts (e.g., gene, protein, drug, etc). This problem can also occur at the 

level of data modeling. For example, the concept ‘experiment’ in one microarray 

database (e.g., SMD) may refer to a series of samples (corresponding to different 

experimental conditions) hybridized to different arrays. In another microarray 

database (e.g., RAD [65]), an experiment may refer to a single hybridization.

 Relations. There are many kinds of relationships between database entries, some one-

to-one like synonyms but also one-to-many relationships are prevalent. For example, 

a single Gene Ontology identifier can be related with many UniProt identifiers (i.e. 

they all share the same functional annotation). An important structuring principle for 

genes and proteins, which leads to one-to-many relationships, is the notion of families 
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based on evolutionary origin. A given protein or gene can be composed of one or 

more family specific units, called domains. For example, a UniProt entity may be 

composed of two different Pfam domains. In general a given Pfam domain will be 

related to many UniProt proteins by this family association, and the UniProt proteins 

can in turn be related to other entities through various kinds of relationships (and 

similarly for Gene Ontology). A transitive closure in such a relationship graph, even a 

few levels deep, can identify indirect relationships with a great number of other 

entities. It is important to note, however, that there are certain relationship types for 

which following them in the wrong way can lead to incorrect inferences, with the 

family relationship being a key one. For example, if protein A and B share Pfam 

domain X, and protein B and C share Pfam domain Y then there is a relationship path 

from A to C but it is through 2 different Pfam domains, and thus A and C are not 

really related. One cannot blindly follow relationship links to infer indirect 

relationships, but must take account of the link types. It is important but a challenge 

to uncover all the important relationship types among biological entities and be able 

to correctly reason with them.

3.3 General Approaches to Database Interoperation

Chapter 1 gave a preview of the two general approaches to database integration, namely, 

the data warehouse approach and the federated database approach, and this section gives 

some more details.  The data warehouse approach emphasizes data translation, whereas 

the federated approach emphasizes query translation.  The warehouse approach involves 

translating data from different sources into a local data warehouse in common format
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under a unified schema and executing all queries on the warehouse rather than on the 

distributed sources of that data. This approach eliminates various problems including 

network bottlenecks, slow response times, and the occasional unavailability of sources. In 

addition, creating a warehouse allows for an improved query efficiency or optimization 

since it can be performed locally [66]. Another benefit of this approach is that it allows 

values (e.g., filtering, validation, correction, and annotation) to be added to the data 

collected from individual sources; this is possible because the data is copied into the data 

warehouse and can be modified, whereas the source databases themselves are generally 

read-only. This is a desirable feature in the domain of biosciences. The data warehouse 

approach, however, suffers from the maintenance problem in light of evolution of the 

source databases (both in structure and content). The warehouse needs to be periodically 

updated to reflect the modifications of the source databases and, based on how many 

databases are present in the warehouse and the complexity of the modifications, there can 

be considerable lag time in updates preventing users from seeing and being able to use 

the most up-to-date data. Some representative examples of biological data warehouses

include SRS [67], BioWarehouse [68], Biozon [69], and DataFoundry [70].

The federated database approach concentrates on query translation [71]. It 

involves a mediator, which is a middleware responsible for translating, at runtime, a 

query composed by a user on a single federated schema into separate queries on the local 

schemas of the underlying data sources, executing all the separate queries, and combining 

all the results into a single unified result.  A mapping is required between the federated 

schema and the source schemas to allow query translation between the federated schema 

and the source schemas.  While the federated database approach ensures data is 
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concurrent / synchronized and it is easier to maintain (when new databases are added), it 

generally has a poorer query performance than the warehouse integration approach. Some 

representative examples of the federated database approach include BioKleisli [72], 

Discoverylink [73], and QIS [74]. A methodological overview and comparison of these

two major database integration approaches was discussed in the biomedical context [1].

3.4 Semantic Web Approach to Data Interoperation

The semantic web addresses interoperation by seeking methods to facilitate machine-

based identification and semantic interoperability of web resources. Crucial to the 

semantic web approach is the design and development of ontologies (semantic part) that 

are represented in computer-readable formats (syntactic part). While the HyperText

Markup Language (HTML) is used for providing a human-friendly data display in web 

browsers, it is not machine-friendly. In other words, computer applications do not know 

the meaning of the data when parsing the HTML tags, since they only indicate how data 

should be displayed. To address this problem, the eXtensible Markup Language (XML) 

was introduced, to allow meaningful tags to be defined and associated with data values. 

In addition, a hierarchical (element/sub-element) structure can be created using these 

tags. With such descriptive and hierarchically-structured labels, computer applications 

are given better semantic information to parse data in a meaningful way. 

While XML has become a standard syntax for data exchange between 

applications it does not adequately address semantics. In particular, XML lacks

expressivity for formal knowledge representation and inference. Despite its machine 

readability, as indicated by [75]., the nature of XML is syntactic and document-centric. 

This limits its ability to achieve the level of semantic interoperability required by highly 
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dynamic and integrated bioinformatics applications. In addition, there is a problem with 

the proliferation of and redundancy of XML formats in the life sciences domain; 

overlapping XML formats (e.g., SBML [76] and PSI MI [77]) have been developed to 

represent the same type of biological data (e.g., pathway data). 

The introduction of the semantic web has taken the usage of XML to a new level 

of ontology-based standardization. In the semantic web realm, XML is used as an 

ontological language to implement machine-readable ontologies in conjunction with 

standard knowledge representation techniques. The Resource Description Framework 

(RDF) (http://www.w3.org/RDF/) is an important first step in this direction. It offers a 

simple but useful semantic model based on a directed graph structure. In essence, RDF is 

a modeling language for defining statements about objects and the relationships among 

them. Such objects and relationships are uniquely named and identified using the system 

of Uniform Resource Identifiers (URIs). Each RDF statement is a triplet with a subject, 

property (or predicate), and property value (or object). For example, 

<“http://en.wikipedia.org/wiki/Protein#”,

“http://en.wikipedia.org/wiki/Name#”,

“http://en.wikipedia.org/wiki/P53#”>

is a triple statement expressing that the subject Protein has P53 as the value of its Name

property. An object may be related to many other objects through many different 

relationship types, and a large group of inter-related objects thus form a directed graph 

structure where the nodes are objects and the directed edges are the relationships. RDF 
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also provides a means of defining classes which can be used for both objects and 

properties/predicates. These classes are used to build statements that assert facts about 

objects and properties/predicates. RDF uses its own syntax (RDF Schema or RDFS) for

writing class schemas. RDFS is more expressive than RDF and it includes subclass /

superclass relationships as well as constraints on the statements that can be made in a 

document conforming to the schema.

Some biomedical datasets such as the Gene Ontology [36], UniProt (RDF 

available at http://expasy3.isb-sib.ch/~ejain//rdf/), and the NCI thesaurus [78] have been 

made available in RDF format. The Semantic Web Health Care and Life Sciences Special 

Interest Group (SW HCLSIG) [79] has been formed as a community effort within the 

World Wide Web Consortium to promote and develop semantic web use cases in the 

healthcare and life science domains.

Extensions of RDF, such as the Ontology Web Language or OWL [16] based on 

description logics [80], exist and provide a richer framework for knowledge

representation and inferencing. However, RDF has the advantage that it is relatively 

simple to understand and use but much can practically be done with it. Its simplicity and 

usefulness make it likely more people will use it and it will spread more, better 

supporting widespread loosely-coupled collaborative data integration; i.e. RDF is 

arguably the "most bang for your buck" or "best value" semantic web technology, and has 

the best "simplicity versus expressiveness" tradeoff; i.e. RDF exemplifies the principle of 

least power discussed earlier [17]. This thesis thus focuses on practical uses of RDF for 

data interoperation.
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3.5 YeastHub

YeastHub demonstrates how to use the RDF approach to integrate heterogeneous 

genomic data, focusing on yeast data. YeastHub involves using a native RDF database 

system called Sesame [13] to implement a warehouse or hub for integrating diverse types 

of genomic/proteomic data. Sesame allows users to choose whether their RDF repository 

will be stored in main memory, in an underlying relational database (MySQL, 

http://www.mysql.com), or in native RDF files (based on DBM files). For small or 

moderate size datasets, the main memory approach provides the fastest query speed. For 

large amounts of data, Sesame utilizes the efficient data storage and indexing facilities 

provided by the relational database engine. Finally, the native file-based approach 

eliminates the need of using a database and its associated overhead at the cost of some 

performance if the data files involved are large. The YeastHub system consists of three 

key components: registration, data conversion, and data integration.

3.5.1 Registration

This component allows the user to register a web-accessible dataset so that it can be used 

by YeastHub. During the registration process, the user needs to enter information 

(metadata) describing the dataset such as the web location (URL), owner, and data type. 

The dataset description uses standard terminology from the Dublin Core metadata

standard [81] and to encode the metadata in a standard format, the Rich Site Summary 

(RSS) format was used. RSS is a lightweight application of RDF, as the amount of 

metadata involved is typically small or moderate. The RSS-encoded description of an 

individual dataset is called an “RSS feed”. Many RSS-aware tools (e.g., RSS readers and 

aggregators) are available in the public domain, which allow automatic processing of 
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RSS feeds. Among the different versions of RSS, RSS 1.0 was chosen because it supports

RDF Schema. This allows ontologies to be incorporated into the modeling and 

representation of metadata. Another advantage of using RSS 1.0 is that allows reuse of 

standard/existing modules as well as creation of new custom modules. The custom 

modules can be used to expand the RSS metadata structure and contents to meet specific 

user needs.

3.5.2 Data Conversion

As the registered datasets are provided by different sources in different formats, we need 

to convert these formats into the RDF format. A variety of technologies can be used to 

perform this data conversion. XSLT is used to convert XML datasets into the RDF 

format. For data stored in relational databases, D2RQ [12] is used to map the source 

relational structure to the target RDF structure. In addition, YeastHub provides a 

converter for translating tabular datasets into the RDF format. The translation operates on 

the assumption that each dataset belongs to a particular data type or class (e.g. gene, 

protein, or pathway) where each row represents a separate record (e.g. gene, protein, or 

pathway record), and one of the data columns is chosen by the user to hold the unique 

identifier for records. Each identifier identifies an RDF subject. The rest of the data 

columns become RDF properties of the subject. The user can choose to use the header 

column values as the default property names or enter his / her own property names. The 

system allows some basic filtering or transformation of string values (e.g., string 

substitution) when generating the property values. Once a dataset is converted into the 

RDF format, it can be loaded into the RDF repository for storage and queries. Also, it can 

be accessed by other applications through an API.



50

3.5.3 Data Integration

Once multiple datasets have been registered and loaded into YeastHub’s RDF repository, 

integrated RDF queries can be composed to retrieve related data across the multiple 

datasets. YeastHub offers two kinds of query interface.

1. Ad hoc queries. This allows the user to textually compose RDF-based query 

statements and issue them directly to the data repository. Currently, it allows the user 

to use the following query languages: RQL, SeRQL, and RDQL. This requires the 

user to be familiar with at least one of these query syntaxes as well as the structure of 

the RDF datasets to be queried. SQL users typically find it easy to learn RDF query 

languages. 

2. Form-based queries. While ad hoc RDF queries are flexible, users who do not know 

RDF query languages or who want simpler means of executing basic queries can use 

YeastHub’s guided query builder interface to pose queries. YeastHub allows users to 

query the repository through web query forms, although they are not as flexible as the 

ad hoc query approach. To create a query form, YeastHub provides a query template 

generator. First, the user selects the datasets and the properties of interest. Second, the 

user needs to indicate which properties are to be used for the query output (select 

clause), the search Boolean criteria (where clause), and the join criteria (property 

values that link the records of the multiple datasets, e.g. gene identifier). In addition, 

the user is given the option to create a textfield, pulldown menu, or select list (in 

which multiple items can be selected) for each search property. Once all the 
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information has been entered, the user can go ahead to generate the query form by 

saving it with a name. The user can then use the generated query form to perform 

Boolean queries on the datasets associated with the form. 

3.5.4 Example YeastHub Query

Fig. 2 shows an RDF query statement written in SeRQL (Sesame implementation of 

RQL), which simultaneously queries the following yeast resources: a) essential gene list 

obtained from MIPS, b) essential gene list obtained from YGDP, c) protein-protein 

interaction data [82], d) gene and GO ID association obtained from SGD, e) GO 

annotation and, f) gene expression data obtained from TRIPLES [24]. Datasets (a)- (d) 

are distributed in tab-delimited format. They were converted into our RDF format. The 

GO dataset is in an RDF-like XML format (we made some slight modification to it to 

make it RDF-compliant). TRIPLES is an Oracle database. We used D2RQ to 

dynamically map a subset of the gene expression data stored in TRIPLES to RDF format. 
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Fig. 2. SeRQL query statement correlating between gene essentiality and connectivity.

The example query demonstrates how to correlate between gene essentiality and 

connectivity derived from the interaction data. The hypothesis is that the higher the

connectivity of a gene, the more likely that it is essential. This hypothesis has been 

investigated in other work [83, 84]. The example query includes the following Boolean 

condition: connectivity = 80, expression_level = 1, growth_condition = vegetative, and 

clone_id = V182B10. Such Boolean query joins across six resources based on common 

gene names and GO IDs. Fig. 2 (at bottom) shows the query output, which indicates that 
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the essential gene (YBL092W) has a connectivity equal to 80. This gene is found in both 

the MIPS and YGDP essential gene lists, thus giving a higher confidence of true 

essentiality (i.e. the two resources might have used different methods and sources to 

identify their essential genes, and their concordance could indicate higher likelihood of 

true essentiality). The query output displays GO annotation (molecular function, 

biological process, and cellular component) and TRIPLES gene expression.
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Chapter 4 LinkHub

An important problem encountered in building YeastHub was that, although we were 

able to co-integrate many disparate datasets, the integration was thin; the key to effective 

and flexible use of YeastHub was numerous and varied connections among the integrated 

datasets and these were limited in the original YeastHub system. This problem was an 

important motivation for the LinkHub system described in this chapter. Rather than 

integrate all types of data as YeastHub aims to do, LinkHub focuses on an important and 

more manageable high-level structuring principal for biological data, namely biological 

identifiers and the relationships (and types of relationships) among them. LinkHub is thus 

useful and complementary to YeastHub as a “connecting glue” among datasets in that it 

makes and stores these cross-references (i.e. performs ontology alignment of biological 

identifiers) and enables more complete integrated access to the YeastHub data.

LinkHub is a semantic-web RDF-based system that manages complex graphs of 

proteomics identifier relationships and allows exploration with web interactive and query 

interfaces. For efficiency and robustness, relational-database access and translation 

between the relational and RDF versions is also provided. LinkHub is practically useful 

in creating small, local hubs on common topics and then connecting these to major 

portals in a federated architecture; LinkHub has been used to establish such a relationship 

between UniProt and the North East Structural Genomics Consortium. LinkHub can thus 

help support loosely coupled, collaborative data integration without requiring explicit 

coordination or centralization. In its role as “connecting glue”, LinkHub also facilitates 

queries and access to information spread across multiple databases between different 

identifier spaces. Example queries of the combined YeastHub and LinkHub are given 
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discovering “interologs” of yeast protein interactions in the worm and exploring the 

relationship between gene essentiality and pseudogene content, and also showing how 

“protein family based” retrieval of documents can be achieved. LinkHub is accessible by 

either http://hub.gersteinlab.org or http://hub.nesg.org.

4.1 Background

A key abstraction or “scaffold” for representing biological data is the notion of 

unique identifiers for biological entities and relationships among them. For example, each 

protein sequence in the UniProt database is given a unique accession by the UniProt 

curators, e.g. Q60996; this accession uniquely identifies its associated protein sequence 

and can be used as a key to access its sequence record in UniProt. And UniProt sequence 

records contain cross-references to related information in other genomics databases, e.g. 

Q60996 is cross-linked in UniProt to Gene Ontology identifier GO:0005634 and Pfam 

identifier PF01603 (although the kinds of relationships, which would here be “functional 

annotation” and “family membership” respectively, are not specified in UniProt). Two 

identifiers such as Q60996 and GO:0005634 and the cross-reference between them can 

be viewed as a single edge between two nodes in a graph. Conceptually, then, a large, 

important part of biological knowledge can be viewed as a massive graph whose nodes 

are biological entities such as proteins, genes, etc. represented by identifiers and the links 

in the graph are typed and are the specific relationships among the biological entities. 

Figure 3 is a conceptual illustration of the graph of relationships among biological 

identifiers, with the boxes representing biological identifiers (originating database names 

given inside) and different edge types representing different kinds of relationships. The 

problem is that this graph of biological knowledge does not explicitly exist. Parts of it are 
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in existence piecemeal, e.g. UniProt’s cross references to other databases, while other 

parts do not exist, e.g. the connections between structural genomics targets and UniProt 

identifiers.

Fig. 3. A conceptualization of the semantic graph of interrelationships among biological 
identifiers.

A basic problem preventing this graph of relationships from being more fully 

realized is the problem of nomenclature. Often, there are many synonyms for the same 

underlying entity caused by people independently naming them for use in their own 

datasets or leftover common names that people loosely gave to biological entities early 

on before large-scale databases were created and which have managed to stick as names 

used by researchers. An example of this synonym problem is that there are many 

synonymous protein identifiers, as different laboratories (for example, the structural 

genomics centers) have assigned their own lab-specific identifiers to the proteins they are 
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working on. There can also be lexical variants of the same underlying identifier (e.g. 

GO:0008150 vs. GO0008150 vs. GO-8150). Synonyms are a small part of the overall 

problem, however, and more generally there are many kinds of relationships, some one-

to-one but also one-to-many relationships are quite prevalent. For example, a single Gene 

Ontology identifier can be related with many UniProt identifiers (i.e. they all share the 

same functional annotation).

An important structuring principle for genes and proteins, which also leads to one 

to many relationships, is the notion of families based on evolution. A given protein or 

gene can be composed of one or more family units, called domains. For example the two 

Uniprot entities in figure 3 are both composed of two different Pfam domains. In general 

a given Pfam domain will be related to many UniProt proteins by this family type link, 

and these UniProt proteins can be related further still to other entities through various 

kinds of relationships (and similarly for GO). Thus, doing a transitive closure even a few 

levels deep in this relationship graph can lead to indirect relationships with a great 

number of other entities, and being able to store, manage, and work with this graph of 

entities and relationships can lead to many opportunities for interesting exploratory 

analysis. It is important to note, however, that there are certain relationship types for 

which following them in the wrong way can lead to incorrect inferences, with the family 

relationship being a key one. For example, starting from some protein in the graph you 

might reach another protein that shares a common family domain; if this other protein has 

additional different domains then it is generally not valid to propagate inferences made 

via these additional domains to the original protein. If you don’t have a concept of 

relationship types and what they mean then you might just blindly assign features you 
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find in following links of relationships and this could potentially lead to serious 

inaccuracies in your analysis.

4.2 Implementation

4.2.1 LinkHub: a system for loosely coupled, collaborative integration 

of proteomics identifier relationships

The semantic web is increasingly gaining traction as the key standards-based platform for 

biological data integration [75, 79, 85, 86]. LinkHub is designed based on a semantic 

graph model, which captures the graph of relationships among biological entities 

discussed above. LinkHub is thus a good fit to semantic web technologies, in particular 

RDF because RDF precisely models such graph data. To provide a scalable 

implementation while exploring the semantic web database technologies, LinkHub was 

implemented in both a MySQL (http://www.mysql.com) database and in a Resource 

Description Framework or RDF database. LinkHub provides interfaces to interact with 

this graph in various ways such as a web frontend for viewing and traversing the graph as 

a dynamic expandable / collapsible HTML list and a mechanism for viewing particular 

path types in the graph, as well as via RDF query languages.

Another motivation for LinkHub is that centralized data integration to an extent 

does make sense, e.g. a single lab or organization might want to interrelate its various 

resources to one another and to larger, well-known resources such as UniProt or 

GenBank, i.e. create a local central hub of interconnections among its individual data 

resources; but it does not want to have to explicitly connect its data resources up to 

everything in existence, which is impossible. The key idea is that if groups independently 
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maintaining data resources each connect their resources up to some other resource X, 

then any of them can reach any other through these connections to X, and we can 

collectively achieve incremental global integration of genomics data in this way. 

LinkHub is a software architecture and system which aims to help realize this goal by 

enabling one to create such local minor hubs of data interconnections and connecting 

them to major hubs of data such as UniProt or GenBank in a federated “hub of hubs” 

framework and this is illustrated in figure 4.

Fig. 4. LinkHub as an enabler of an efficient “hub of hubs” organization of biological data.
The different colors represent different labs, organizations, or logical groupings of data resources.

4.2.2 Mapping Biological Identifiers and Obtaining LinkHub Data

As discussed in chapter 1, biology has a fundamental, commonly accepted principle 

around which data can be organized, namely biological sequences such as DNA, RNA, 

and protein, and various string matching techniques for biological sequences can solve a 

large part of the ontology alignment problem in biology. LinkHub thus takes advantage 

of biological sequence matching, in particular conservative, exact sequence matching, to 

cross-reference or align biological identifiers. LinkHub also takes advantage of available 

sources of pre-computed identifier mappings, with the most important one being UniProt 

which is arguably the most important major proteomics resource and serves as LinkHub’s 
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backbone content (i.e. most relationships between identifiers in LinkHub are indirect 

through UniProt). The general strategy for mapping identifiers in LinkHub is to first take 

advantage of known and trusted pre-computed identifier mappings; if such pre-computed 

mappings are unavailable, an attempt is made to map identifiers based on exact sequence 

matches of their underlying sequences to UniProt and other sources of sequence data 

whose identifiers are stored in LinkHub.

Efficient, exact sequence matching programs were developed and used to do 

quick inter-database cross-referencing or alignment based on exact sequence matches 

(e.g. to cross-reference TargetDB to UniProt, see below). A custom Perl module was 

developed and used to index UniProt (and in general sequence databases in FASTA 

format [87]) to support this fast exact sequence matching. Specialized Perl web crawlers 

and other scripts were written to fetch and extract data from different sources in different 

formats; identifiers, identifier relationships, and other related information were extracted 

from the sources and inserted into the LinkHub MySQL database (which is also 

converted to RDF and inserted into the RDF version of LinkHub; see below). A running 

instantiation of the LinkHub system is at http://hub.gersteinlab.org and 

http://hub.nesg.org, and it is actively used and populated with data from the Gerstein Lab

(http://www.gersteinlab.org) and related to the lab’s research interests. Thus while the 

ideas of LinkHub are applicable in general to biological data, the concrete instantiation of 

LinkHub focuses heavily on proteomics data, as that is a key research initiative of the 

Gerstein Lab. The “hub of hubs” relationship described above has already been 

established between UniProt and LinkHub (i.e. UniProt hyperlinks to the LinkHub 

instantiation and cross-references to it in its DR lines). In addition, LinkHub cross-
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reference the proteins which are targets of the structural genomics initiative (obtained 

from the TargetDB resource [47]) to UniProt and the LinkHub instantiation serves as a 

“related links” and “family viewer” (more below) gateway for the Northeast Structural 

Genomics Consortium (NESG) [45] with which the Gerstein Lab is affiliated. Additional 

focuses of the LinkHub instantiation are yeast resources, macromolecular motions [88], 

and pseudogenes [89].

4.2.3 LinkHub Database Models

LinkHub is conceptually based on the semantic web (graph) model and is thus

represented and stored in Resource Description Framework or RDF [10]. However, 

experience using RDF database technology has found it to be currently lacking in 

performance and scalability [26]. In fact, this is likely an important impediment to more 

active and widespread use of the semantic web, and the creation of high-performance, 

robust RDF databases should be a research priority of the semantic web community. 

Thus, to support LinkHub’s practical daily use, LinkHub is also modeled and stored 

using relational database technology (MySQL) for efficiency and robustness. RDF can be 

easily stored in relational databases, usually by having a “triples” table which stores the 

RDF graph’s edges, and some RDF databases (e.g. 3Store [90]) use relational databases 

such as MySQL as their underlying data store. However, the drawback of storing RDF in 

relational databases through approaches such as the “triples” table is that it is not a 

natural or efficient representation of the graph data. In particular, it is difficult to use 

declarative relational queries (SQL) to perform certain types of graph operations such as 

recursive traversal of links and retrieval of sub-graphs; such graph operations could be 

impossible or at least very inefficient, e.g. requiring the “triples” table to be self-joined 
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many times. Specialized procedural codes are thus needed to implement such graph 

operations (such as were required for the “path type” view described below). Although 

relational databases such as Oracle support hierarchical queries, these query languages 

are vendor-specific, which are not compliant with the SQL standard. Thus, while ideally 

LinkHub could be stored and managed using only an RDF database, the lack of high-

performance, robust RDF database technology required modeling and storing LinkHub 

also in the more tried and tested relational database technology for practical daily use. 

The relational structure of LinkHub (see figure 5a) reflects how the graph of 

biological identifier relationships and associated data, such as URLs of identifier-specific 

web pages, are managed and stored. Biological identifiers are stored in the identifier table 

and are typed, where the identifier_types table gives the type. Thus, for example, two 

different identifiers in separate databases which happen to have the same identifier text 

can nevertheless be distinguished by differing identifier types (based on the databases 

they come from). The mappings table is used to store the relationships between 

identifiers, with the “type” attribute giving the description or meaning of the relationship. 

The identifier table thus gives the nodes and the mappings table the edges of the graph of 

biological identifier relationships. The resource, resource_accepts, and link_exceptions 

tables together manage and store URLs for identifier-specific web pages (e.g. the web 

page at UniProt giving specific information particular to some UniProt identifier). The 

basic idea is that web resources such as UniProt have template URLs which can be 

interpolated with particular identifiers to generate identifier-specific URLs. The resource 

table contains a short name, longer description, and the template URL of web resources 

such as UniProt. The resource_accepts table lists the particular types of identifiers that 
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can be interpolated into a resource’s template URL, as well as an exception type 

except_type. The exception type is to handle cases where not all identifiers of an 

accepted type are legal, i.e. some of the identifiers cannot be interpolated into the 

template URL to generate a good URL.  If except_type is NONE then there are no 

exceptions and all identifiers of the type are accepted. Otherwise except_type has value 

NACC or ACC. If except_type is NACC, then the exceptions are explicitly given in the 

link_exceptions table (i.e. the identifiers in the link_exceptions table of the given type for

the resource are the ones that cannot be interpolated into the template URL, and all other 

identifiers of the type CAN be interpolated). If except_type is ACC then the behavior is 

the opposite: the identifiers NOT listed in the link_exceptions table are the exceptions 

and the ones explicitly listed are the only ones that can be interpolated into the resource’s 

template URL. NACC and ACC exception types are both supported to allow the most 

efficient handling of exceptions, i.e. whichever is smaller between the set of accepted 

identifiers and the set of exception identifiers can be listed in link_exceptions thus 

minimizing the amount of space necessary for storing exceptions. The resource_group 

table supports grouping of web resources, e.g. all web resources maintained by the 

Gerstein Lab or relating to protein structure. Finally, the resource_attribute table allows 

free text attributes to be associated with web resource, however it is not currently used.
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Fig. 5. LinkHub Relational and RDF Data Models. (a) LinkHub relational model (b) An example 
RDF graph (c) and (d) How the relational model maps to the RDF structure.

4.2.4 RDF Data Model

RDF is a popular data model (or ontological language) for the semantic web and 

is designed to provide a natural representation of a directed labeled graph. In addition, it 

comes with query languages (e.g., RDQL [91]) to allow the user to pose semantic queries 

against graph data. While there are more advanced ontological languages such as the

Web Ontology Language or OWL [16] that support data reasoning based on Description 

Logics or DL (http://dl.kr.org/), RDF is a good start and much can be effectively modeled 
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with it. For example, the benefits of representing proteomics data in RDF were discussed

in [75]. In addition, UniProt data has recently been made available in RDF format 

(http://www.isb-sib.ch/~ejain/rdf/data/).

RDF is based on the idea of identifying things using web identifiers called 

Uniform Resource Identifiers or URI’s [11], and describing resources in terms of 

properties and property values. This enables RDF to represent simple statements (in the 

form of RDF triplets) about resources as a graph of nodes and arcs. Each statement is 

represented as an RDF triplet: (subject, property, property value), where property value 

can be a literal or a pointer to another subject. Such a collection of statements represent 

the resources, and their properties and values. Figure 5b gives an example RDF graph of 

two statements or triplets: (Q60996, gene_annotation, GO:0005634) and (Q60996, 

protein family, PF01603), which describe that there is a protein (Q60996) whose gene 

annotation is identified by GO: 0005634 and protein_family by PF01603. This also 

exemplifies using an RDF graph to connect multiple resources. Here, it connects UniProt, 

Gene Ontology, and Pfam. The detailed description associated with each identifier can be 

provided by the corresponding resource (the URL or URI can provide access to such 

detailed descriptions).

It is straightforward mapping between the relational and RDF versions of 

LinkHub and Java code is used to do this. Figures 5c and 5d illustrate how the relational 

tables are mapped to the corresponding RDF structure. 5c illustrates how the key 

LinkHub relational tables identifier_types, identifiers, and mappings (reproduced above 

the RDF structure) are mapped to the corresponding RDF structure. The resulting RDF 

graph captures different types of object identifiers stored in different databases and the 
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relations (or mappings) between these object identifiers. The mapping types are explicitly 

represented as RDF properties. 5d shows how the rest of the LinkHub relational tables 

(reproduced above the RDF structure) map to the RDF structure. The resulting RDF 

graph captures the different web resources (which can be grouped) accessible by 

LinkHub. In addition, the graph captures information about which web resources accept 

which types of object identifiers, as well as exceptions. Appendix 2 contains the RDF 

schema for the RDF structure of LinkHub.

4.2.5 LinkHub Web Interfaces

The primary interactive interface to the LinkHub database is a web-based interface 

(implemented using the so-called AJAX technologies, see 

http://en.wikipedia.org/wiki/AJAX, i.e. DHTML, JavaScript, DOM, CSS, etc.) which 

presents subsets of the graph of relationships in a dynamic expandable / collapsible list 

view. This interface allows viewing and exploring of the transitive closure of the 

relationships stemming from a given identifier interactively one layer at a time: direct 

edges from the given identifier are initially shown and the user may then selectively 

expand fringe nodes an additional layer at a time to explore further relationships 

(computing the full transitive closure is prohibitive, and could also cause the user to 

“drown” in the data, and we thus limit it initially, and in each subsequent expansion, to 

anything one edge away, with the user then guiding further extensions based on which 

relationships he would like to explore).

Figure 6 is a screenshot of the interface. Here, the data and relationships for 

UniProt identifier P26364 are presented. P26364 is presented at the root of the list, and 

lower levels contain information on additional related identifiers. Each identifier has two 
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subsections: Links which gives a list of hyperlinks to web documents directly relevant to 

the identifier; and Equivalent or Related Ids which contains a list of additional identifiers 

related to the first identifier (the relationship type if it exists is given in parentheses; a 

synonym relationship is assumed if no relationship is given). The identifiers in the 

Equivalent and Related Ids section may themselves be further related to other identifiers 

which will have their own Links and Equivalent or Related Ids sections, ad nauseum. The 

initial display shows the transitive closure of the root identifier one level deep, and 

dynamic callbacks to the server retrieve additional data when the user clicks on 

identifiers whose subsections have not yet been loaded; in this way, the user can explore 

the relationship paths he desires without performance penalties (of loading the whole 

graph) or ‘information overload’. The interface is dynamic, and a ‘+’ list icon can be 

expanded to view the hidden underlying content, and a ‘-‘ list icon can be clicked to hide 

the content.

The second interface presents results the same as the first interface (i.e. dynamic 

expandable / collapsible list view) but allows viewing of particular path types in the 

graph. For example, one might want to view all proteins in some database D in the same 

Pfam family as a given protein; in LinkHub Pfam relationships are stored for UniProt 

proteins, so one could view the fellow family members of the given protein by viewing

all identifier relationship paths (starting from the given protein) matching:

Given protein in database D  equivalent UniProt protein  Pfam family 

UniProt proteins  other equivalent proteins in database D
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Fig. 6.The basic DHTML list interface to LinkHub.
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4.3 Results

4.3.1 Novel Information Retrieval based on LinkHub Relational Graph 

Structure

The "path type" interface to LinkHub allows one to flexibly retrieve useful subsets of the 

web documents linked to identifier nodes in the graph based on the relational structure of 

the graph. As discussed in chapter 1, normal search engines (which generally just rely on 

users entering keywords) could not provide such access, and thus LinkHub enables novel 

information retrieval to the web documents it knows about (i.e. linked to its identifier 

nodes). LinkHub has limited web document hyperlinks initially linked to its nodes, and if 

this could be increased the utility of this novel information retrieval would be enhanced. 

In fact, the next chapter shows how the information present in the LinkHub graph can be 

used to construct ranking functions for document relevance ranking, and this can be used 

to automatically retrieve documents from the web or the scientific literature (from 

PubMed) relevant to identifiers in the LinkHub graph.

An important and practical use of this “path type” interface is as a secondary, 

orthogonal interface to other biological databases in order to provide different views of 

their underlying data. For example, the molecular motions database MolMovDB [88]

provides movie clips of likely 3D motions of proteins, and one can access it by PDB 

(http://www.pdb.org) identifiers. However, an alternative useful interface would be a 

“family view” where one queries with a PDB identifier and wants to see all available 

motion pages for proteins that are in the same family as the query PDB identifier, and 

LinkHub provides this interface for MolMovDB. LinkHub also provides a similar 

“family view” interface to structural genomics data, e.g. see the NESG’s SPINE [46]
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target pages such as http://spine.nesg.org/target.pl?id=WR4 for the “NESG Family 

Viewer” links. One can easily imagine other similar applications, e.g. a “functional view” 

where all pages for proteins that have the same Gene Ontology function as a given 

protein are shown or a “pseudogene family view” where all pages for pseudogenes of 

proteins in the same family are shown. While the “path type” interface is a simple way of 

providing novel, relational access to LinkHub identifier node-linked documents, RDF 

query language access to the LinkHub relational graph would allow the most flexible 

novel information retrieval.

4.3.2 RDF Queries

To demonstrate the data interaction and exploration capabilities engendered by the RDF 

version of LinkHub, the RDF-formatted LinkHub dataset is loaded into the YeastHub 

system described above which uses Sesame [13] as the native RDF repository. Two 

demonstration queries below written in SeRQL (Sesame implementation of RQL) 

demonstrate one can efficiently do the kinds of interesting preliminary scientific 

investigation and exploratory analysis commonly done at the beginning of research 

initiatives (e.g. to see whether they are worth pursuing further). These queries make use 

of information present in both YeastHub and LinkHub (and thus could not be done 

without joining the two systems), and LinkHub is used as ‘glue’ to provide connections 

(both direct and indirect) between different genomics identifiers. It is noteworthy that 

these queries can be formulated and run in relatively very little time (a few hours at most) 

and they roughly duplicate some results from published papers. In effect, LinkHub does 

the up-front time-consuming manual work of integrating multiple datasets, and this 

integrated data is generally useful for efficient formulation and execution of queries, 
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which is in contrast to the papers which likely required extensive “one-off” effort to

combine the necessary data to achieve their results.

Query 1: Finding Worm ‘Interologs’ of Yeast Protein Interactions

Proteins rarely act in isolation and often interact with one another and other molecules to 

perform necessary cellular actions. Experimental determinations of protein interactions 

are expensive and computational methods can leverage them for further interaction 

predictions. With this query we want to consider all the protein interactions in yeast (S. 

cervisiae) and see how many and which of them are present as evolutionarily related 

homologs in worm (C. elegans), also known as interologs [92], i.e. protein pairs in worm 

corresponding to evolutionarily related known interacting pairs in yeast. We thus start 

with a dataset containing known and predicted yeast protein interactions which is already 

loaded into YeastHub [93]; here the interactions are expressed between yeast gene 

names. Part of the SeRQL statement for this query together with a portion of its 

corresponding output can be seen in figure 7; appendix 3 contains the full text of the 

SeRQL query statement. However, abstractly, the query is doing the following. For each 

yeast gene name in the interaction set we can use LinkHub’s data as ‘glue’ to determine 

its homologs (via Pfam) in worm by traversing paths in the LinkHub relationship graph 

of type:

yeast gene name  UniProt Accession  Pfam accession  UniProt Accession 

WormBase ID.
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Then, for each pair in the yeast protein interaction dataset, we determine if both of its 

yeast gene names lead to WormBase IDs [94] in this way and print those WormBase IDs 

as possible protein interactions if so.

Query 2: Exploring Pseudogene Content versus Gene Essentiality in Yeast and 

Humans

Pseudogenes are genomic DNA sequences similar to normal genes (and usually derived 

from them) but are not expressed into functional proteins; they are regarded as defunct 

relatives of functional genes [95, 96]. In the queries here we explore the relationship 

between gene essentiality (a measure of how important a gene is to survival of an 

organism) and the number of pseudogenes in an organism. We might hypothesize that 

more essential genes might have larger numbers of pseudogenes, and we explore this idea 

with queries of the joined YeastHub and LinkHub data. First, YeastHub has the MIPS 

[97] essential genes dataset, and we use this as our data on gene essentiality; LinkHub 

contains a small dataset of yeast pseudogenes [98].

Abstractly, for each yeast gene name in the list of essential genes we determine its 

pseudogenes by traversing paths in the relationship graph of type:

yeast gene name  UniProt Accession  yeast pseudogene.

For each essential yeast gene we then determine how many pseudogenes it has. We can 

then inspect the list of essential genes to see if there is a relationship between essentiality 

and number of pseudogenes. Humans have a large number of known pseudogenes [99]
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but gene essentiality is difficult to characterize in humans (with many tissue types and 

developmental states complicating the issue). Since essentiality is well studied in yeast, 

one thing we can do is determine the human homologs of yeast essential genes, which 

would perhaps likely be “more important” in a survival sense, and examine them for 

patterns associated with essentiality. For each yeast gene name in the list of essential 

genes, we can find the homologous pseudogenes in human by traversing paths in the 

LinkHub relationship graph of type:

yeast gene name  UniProt Accession  Pfam accession  human UniProt Id 

UniProt Accession  Pseudogene LSID.

Part of the SeRQL for the first query (for yeast pseudogenes) and results from both can

be seen in figure 7 (appendix 3 contains the full text of the SeRQL query statements for 

both queries), and they show that few yeast essential genes are associated with 

pseudogenes whereas this is not the case with human. This may reflect the difference in 

processes of creation of the predominate numbers of yeast and human pseudogenes 

(duplication vs retrotransposition, see [95, 96]).
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Fig. 7. Example RDF queries.  (a) shows a part of the SeRQL query that finds pairs of worm (C. 
elegans) proteins homologous to pairs of interacting proteins in yeast (C. cervisiae), i.e. “interologs”. b) 
shows part of the corresponding  query results. (c) shows part of the SeRQL query that explores the 
relationship between gene essentiality and the level of pseudogene content in yeast, which is one feature 
that might be hypothesized to be associated with essentiality, with queries of the joined YeastHub and 
LinkHub data. (d) shows the yeast pseudogenes found, interestingly only one. (e) shows part of the list of 
pseudogenes found in human homologs for a similar query; the full list is long, around 20000, consistent 
with there being many known pseudogenes in humans.
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Chapter 5 Automated Information Retrieval for 

Biological Identifier-related Documents using LinkHub 

Subgraphs

This chapter describes how the information present in the LinkHub relational graph can 

be used for enhanced automated information retrieval access to documents from the web 

or the scientific literature (e.g. Medline) not explicitly linked to identifier nodes in the 

LinkHub graph. For example, an interesting and practical problem would be to retrieve 

documents highly relevant to a UniProt identifier from the web or Medline. The key idea 

is that the LinkHub subgraph emanating from a given identifier and the web pages 

(hyperlinks) linked to the identifier nodes in the subgraph provide copious and detailed

information about the given central identifier that can be used to perform precise and 

accurate relevant document retrieval for it. The web pages linked to the identifier nodes

in the subgraph are considered to be a “gold standard” for what the additional relevant 

documents should be like, and they are used as training sets to construct a ranking 

function used to score and rank additional documents (obtained from the web or scientific 

literature) for how well they match the training set. This chapter will first describe the 

basic procedure for using the LinkHub relational graph to perform automated information 

retrieval for identifier-related documents. Example uses of the procedure to retrieve web 

documents and scientific literature articles (from PubMed) relevant to a UniProt identifier 

will then be given to demonstrate the procedure and show that it gives reasonable results. 

Then, empirical results of the performance of the procedure for a curated bibliography of 

yeast protein-related documents will be given, followed by a discussion.
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5.1 Deficiencies of Standard Search Engines

The simplest approach to find relevant documents for a biological identifier would be to 

simply use a search engine and do a search using the identifier itself as the search term, 

however this likely will not give good results. First, the identifier text might be used in 

many different contexts (e.g. product identifier in a shopping catalog, or generally some 

identifier in another non-biological setting); thus the result set from the search engine will 

be a conflation of all these contexts when what is really wanted is to limit it to only 

documents of the correct, biological context (i.e. for which occurrences of the identifier 

text in the page actually refer to the searched for identifier). Second, many relevant 

documents might not refer to the underlying biological entity (e.g. protein or gene) 

directly by the given identifier, but will use other synonyms to refer to it -- the LinkHub 

graph should contain these synonyms and this additional information should be made use 

of to expand the search. Finally, and most importantly, many important relevant 

documents might not directly refer to the given identifier (or its synonyms) at all; for 

example, an identifier might represent a key protein in an important cancer pathway and 

we would thus like to pull in additional documents about cancer and cancer pathways that 

do not necessarily directly refer to the given identifier. Note that abstracts searchable at 

PubMed (the primary access point to the biomedical scientific literature) do not usually 

contain identifiers, so searching PubMed by related concepts is necessary. Even if 

identifiers are referred to, if we have information about closely related terms (as we do in 

LinkHub) we should not waste this information.
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5.2 Traversing the Graph to get Weights

Define a relational subgraph (or just subgraph) of a node in the LinkHub graph to be all 

nodes reachable from that node by traversing relationship links from that node (i.e. the 

node’s transitive closure of relationships); similarly, define the N-subgraph of a node to 

be the subset of its relational subgraph where all nodes in the subset are reachable by 

traversing at most N relationship links. The key idea is that the LinkHub subgraph for a 

given identifier and the web pages (hyperlinks) linked to the identifier nodes in the 

subgraph is concrete, accurate, extra information about the given identifier that can be 

used to improve document retrieval for the given central identifier. The documents linked 

to the identifier nodes in the subgraph are considered to be a “gold standard” for what the 

additional relevant documents should be like, and are used as a training set to construct a 

ranking function (in the form of a combined word weight vector of all the subgraph 

documents; see below) used to score and rank additional documents for how well they 

match the training set.

However, we do not consider all the web pages linked to identifier nodes in the 

subgraph as equally important. First, the web pages linked directly to the central 

identifier’s node are given the highest importance (weight 1.0), while web pages linked to 

identifiers’ nodes further from the central identifier are scaled down in importance based 

on how many relationship links away they are and the types of those relationship links 

(there is no downscaling for synonym links, and so web pages linked to synonym nodes

are also given the highest weight 1.0). We give numerical weights to particular 

relationship types or related identifiers of particular types. These weights are a kind of 

“degree of relationship” and are meant to indicate how much the pointed to identifier type 
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expresses or elucidates the semantics of the identifier type pointing to it. For example in 

the examples of sections 5.5 and 5.6 weights of 0.75 and 0.5 are assigned respectively to 

identifier relationships of types "UniProt  PFAM” and "UniProt  GO". Thus, if the 

central identifier of interest were a UniProt protein, its pointed to PFAM and GO pages 

would be considered 75% and 50% as important respectively in expressing what the 

UniProt protein is about compared to the pages linked directly to the UniProt protein 

node (and synonym nodes).

An example makes this clear and is shown in figure 8. The weight of a node is 

determined by summing all the weights of incoming nodes, each multiplied by the 

downscaling parameter of its relationship type. This weight calculation starts at the 

originating node (A in fig. 8) and propagates out to its connected nodes, then their 

connected nodes, etc. This figure represents a worked out example, and the final weights 

of the nodes are written below them. Here, let A be the identifier about which additional 

relevant documents are desired. Edges without number labels are considered synonym 

links and they do not incur downscaling (they are implicitly labeled with 1.0); the other 

number labeled edges represent non-synonym relationships for which downscaling is 

employed. The web pages linked to A are most important and given weight of 1.0. B is a 

synonym for A and so its linked web pages are not downscaled and are given full weight. 

Identifier E is not a synonym and its linked web pages are scaled down by 0.5, giving 

them an importance weighting of 0.5. Identifier C has two links coming in from B and E, 

and neither of the links is a synonym; so the weights at B and E are downscaled by .5 and 

0.7 respectively and then added to give the weight for C, i.e. 0.7*0.5 + 0.5 = 0.85. 

Identifier F is a synonym for E and shares its weight of 0.5; identifier G downscales F’s 
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weight by 0.8 to give it a weight of 0.4. Finally, identifier D downscales C’s weight by 

0.33 and adds in its synonym F’s weight to give a weight for D of 0.33*0.85 + 0.5 = 0.78. 

LinkHub has default scaling parameters for its relationship link types such as “family 

mapping” and “functional annotation” which can also be set as parameters.

Fig. 8. Computing importance weights for nodes (and their associated documents) in a 
LinkHub relational subgraph.

5.3 Basic Information Retrieval and Text Categorization

The procedure for document relevance ranking described below uses basic techniques 

from information retrieval [100-102] and text categorization [103-105] and this section 

gives an overview of these. Information retrieval and text categorization solve different, 

but related, problems and use similar basic techniques. Essentially, documents and 

queries are modeled the same in each, and the problem of text categorization is to predict 

which among a discrete number of categories a query document is a member of (e.g. is a 

query news article about sports, business, or the weather?) while the problem of 

information retrieval is, given a query (e.g. a list of words like in a web search engine or 
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even a whole document), score other documents for how well they match the query and 

rank them in decreasing order of relevance to the query. In information retrieval and text 

categorization documents are generally considered to be “bags of words”, i.e. the 

ordering of words and relationships among them, and the syntactic structure and 

semantics of documents, are not considered but rather it is simply the presence or absence 

of words that is important. While this might seem to be too simplistic and ignoring too 

much important information, in fact it works well in practice. Concretely then, documents 

are represented as vectors of word weights, where the weights are meant to be 

proportional to how important the corresponding words are to discriminating the fine-

grain meaning of the document. This way of representing documents is called the vector 

space model. For example, in a document about how some protein catalyzes a reaction 

the following might be part of the vector of word weights for the document:

<protein 5.0, reaction 4.0, catalyze 4.0, the 0.0, a 0.0,

  science 1.5,  biology 1.0 …>

Note that what are intuitively the most discriminating terms, protein, reaction, and 

catalyze, are given the highest weights; the more general but still relevant terms science

and biology are given non-negligible but considerably less weight. Finally, terms such as 

a and the, which are general terms appearing in practically all documents, provide no 

discriminating power and are given no weight. In fact, such general, non-discriminating 

terms are filtered out altogether before weighting is even done; such words are called 

stopwords and a list of such terms to filter is called a stoplist and usually consists of 
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around 100 of the most frequently occurring words.

To generate such a word weight vector from a raw document, a number of steps 

are undertaken. First, if the raw document is not in hand but rather just a hyperlink 

pointing to the document, the raw document text must be fetched over the internet using a 

web client application. Once the raw document text has been obtained it can be 

processed. If the document is not simply raw English text, in particular if it has markup 

such as HTML or XML, then the document must be filtered to raw English text; for 

example, XML and HTML tags need to be stripped (and comment and script sections 

removed). Rather than simply stripping the markup, the markup could be made use of for 

weighting words; for example, words appearing inside the <title> html tag might be 

considered more prominent and important and up-weighted, although there are no hard 

and fast rules for how to modify word weights based on markup and location in the 

document (it is application specific and somewhat ad-hoc). This thesis does not attempt 

to use such markup or location information to modify word weightings. Once the 

document is filtered to raw English text, the document must be tokenized, i.e. broken up 

into the individual terms or words that make up the document. This might seem 

straightforward, i.e. simply break text on whitespace (i.e. all sequences of space, tab, and 

newline characters), and this in fact works correctly in most cases. However, in addition 

to whitespace, there are other characters which are sometimes token delimiters and 

sometimes not, such as periods, colons, question marks, etc. and these complicate 

matters; also, how to handle numbers and numbers appended or pre-pended to words? In 

addition to issues relating to what characters constitute token delimiters (and in what 

context), more advanced lexical analysis can be used to attempt to extract meaningful 
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multi-token elements such as noun phrases, proper names, etc. Depending on the needs of 

the application, one can choose to use very simple or very complex tokenization 

procedures. In general, more complex tokenization procedures are more appropriate to 

fine-grain information extraction applications (such as attempting to extract gene and 

protein names from text) while simpler tokenization procedures suffice for applications 

where documents are considered only to be “bags of words” such as information retrieval 

and text categorization. Thus, this thesis uses a fairly basic tokenization procedure which 

in Perl code is as follows:

sub tokenize {

  my @tokens;
  while ($_[0] =~ /([-\w]+)/g) {
    my $word = lc $1;
    next unless $word =~ /[a-z]/;
    $word =~ s/^[^a-z]+//;  # Trim leading non-alpha characters (helps with ordinals)
    push @tokens, $word;
  }
  return \@tokens;
}

Note that all words are lowercased; word capitalization effectively does not matter and in 

fact can only hurt, e.g. two words which are really the same might not be so recognized 

because of different capitalization. This tokenization procedure and some other code for 

basic information retrieval and text categorization tasks used in the thesis was taken from 

the AI::Categorizer Perl module (http://search.cpan.org/~kwilliams/AI-

Categorizer-0.07/).

After tokenization, the next step is called stemming or lemmatization, but it is an 

optional step. The basic idea is to transform words to their common base forms, for 

example runs, running, runner, and run would all be transformed to the common stem 

form run. The idea is that all these terms really signify the same, underlying concept and 

this should be reflected in the vector of word/term weights --- i.e. a document that 
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contained these terms is really referring to the concept run with high frequency and not to 

many different terms each with low frequency, and thus the word weight vector should 

have a single large weight for run and not several small separate weights for runs, 

running, runner, and run. The effect of stemming, then, is to reduce the number of 

distinct words in a document and to increase the frequency of occurrence of some words 

(i.e. words that would be considered separate without stemming, but collapse to a single 

word with stemming). While stemming procedures are not perfect (i.e. some words will 

not be transformed to their correct base form, or will be stemmed when they shouldn’t be 

or not stemmed when they should be) they work reasonably well and it is generally 

accepted that stemming can provide a small positive benefit to information retrieval and 

text categorization applications, since the weights of words are based partly on their 

frequency in the document (see below), and this thesis thus uses stemming. In particular, 

a standard stemming algorithm that is used in many applications is the so called Porter 

Stemmer [106] (also see http://www.tartarus.org/martin/PorterStemmer/), and this thesis 

uses a Perl implementation of the Porter Stemmer in the Lingua::Stem module 

(http://search.cpan.org/dist/Lingua-Stem/). Note that stopwords can be removed either 

before or after stemming (if after, the stopwords need to be stemmed too); this thesis 

removes stopwords after stemming (although unlikely to make a big difference either 

way, this is the default behavior in the AI::Categorizer Perl module and seemed to 

produce the best results in most cases the author of that module tried, so it is adopted also 

for this thesis).

Finally, after tokenization and stemming we have the list of terms that are present 

in a document and we need to weight these terms to create the document’s word/term 
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weight vector. The basic technique for doing this is called Term Frequency-Inverse 

Document Frequency or simply its acronym TF-IDF. The intuition is that, first, a word 

that occurs frequently in a document is more likely to be central to the meaning of the 

document, i.e. be relevant to what the document is about as a whole, and should thus be 

up-weighted. Second, the less frequent a word is in the corpus or collection of documents 

being queried the more discriminating that word is and that word should thus be up-

weighted; similarly, the more frequent a word is in the corpus the less discriminating it is 

and it should thus be down-weighted (the extreme examples of this are in fact the 

stopwords, which occur in all or a large majority of documents; they have no 

discriminative value and are thus given weight 0, i.e. filtered out). In other words, the 

importance of a word increases proportionally to the number of times that word appears 

in the document but is offset by how common the word is in all of the documents in the 

corpus from which documents are being retrieved.

There are different ways of computing term frequency-inverse document 

frequency that are consistent with the above intuition. The following are some common 

ways of computing term frequency TF for a term T:

 Raw term frequency, i.e. a simple count of the number of times the term occurs in 

the document; call this RTF.

 RTF

 Log(RTF)

 Binary: 1 if term present, 0 otherwise.
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 Normalized: 
k k

i

n

n
where in is the number of occurrences of the term, and the 

sum in the denominator is the total number of terms in the document.

The following are the common ways of computing inverse document frequency IDF for 

term T:

 Standard. Let N be the total number of documents in the corpus and D be the 

document frequency of T in the corpus (i.e. the number of documents in the 

corpus in which T appears at least once). Then, the standard inverse document 

frequency for T is Log 







D

N

 Probabilistic. Let N and D be the same as for standard. Then, the probabilistic 

inverse document frequency for T is Log 





 

D

DN

Finally, once the ways to compute TF and IDF are decided, the weight for term T is then 

simply: weight  T  = IDFTF  . In this thesis, raw term frequency and standard inverse 

document frequency are used; for more details on TF-IDF see the AI::Categorizer

Perl module documentation and Salton et al 1987.

Finally, since documents are modeled as vectors a natural way of computing 

similarity between such word weight vectors is by the cosine angle between them. The 

smaller the angle, the more similar two word weight vectors (and hence their original 

documents) are. This way of measuring similarity between documents is called the cosine 
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similarity measure or cosim for short, and for word weight vectors A and B is defined 

as:

Cosim  BA,  = 
BA

BA 

i.e. the dot product of the vectors divided by the product of their magnitudes. Note also 

that the cosim implicitly normalizes the vectors, as it is equivalent to simply the dot 

product of the normalized A and B. A value of 1 means the angle is 0 and hence signifies 

the maximum similarity; similarly, a value of 0 signifies the maximum angle and the least 

similarity. Information retrieval, then, uses the cosim to measure the similarity between a 

query (either an entire document or a list of terms entered by a user) and documents in a 

corpus being searched --- the result is a list of the corpus documents sorted descending by 

cosim value. In fact, this is essentially how some of the early web search engines worked, 

but it did not work particularly well because a huge number of documents will have about 

the same similarity value when the query consists of only a few terms; in fact, it was 

Google’s solution to this problem [41] of improved relevance ranking by using the link 

structure of documents as “votes” of importance which was so successful and made them 

the most used search engine. The vector space model, TF-IDF term weighting, and cosim 

generally work well for ranking relevance in small document collections, or for larger 

collections (like the web) when the query is large and precise; in fact, the queries 

considered in this thesis are large and precise (multiple, whole documents added together; 

see chapter 5) and the ranking works well as will be shown below.
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5.4 Building a Combined Word Weight Vector for Document 

Relevance Ranking

The techniques described above such as tokenization, stopword filtering, stemming, term 

weighting, and cosine similarity measure are used in the procedure. We first extract the 

N-subgraph of the identifier which is the object of the query from the LinkHub graph for 

some value of N (e.g. 1 is used in the examples in proceeding sections below). We then 

obtain all documents linked to identifier nodes in this N-subgraph and consider them 

weighted by their node’s weight (which was determined as described in section 5.2 

above) --- this using and weighting multiple documents based on their relationships is a

novel aspect of the procedure. We then turn each of these documents into word weight 

vectors as described above, except at the end we multiply all the term weights by the 

weight of their originating document as a whole (gotten from their node’s weight). Next, 

all of these word weight vectors are added together to form the combined word weight 

vector. The combined word weight vector is then sorted by term weight and some 

percentage of the smallest weighted terms are eliminated (they presumably do not 

significantly add to discriminatory power or are effectively uninformative, noise terms 

and can thus be eliminated); for example, the bottom weighted 80% of terms can be 

eliminated and the top weighted 20% kept. To compute relevance for a new document we 

use the standard cosine similarity measure between the word weight vector representation 

of the new document and the N-subgraph documents’ combined word weight vector.

Finally, it is necessary to obtain a set of documents that are potentially relevant and 

related to the given central identifier which is the object of the query (i.e. something to 

actually score and rank with the combined word weight vector). We only need to 
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consider documents which have terms in common with the combined word weight vector 

and a basic search engine can be used essentially as a keyword-to-document hash 

(implemented in the internals of the search engine as a so called inverted index [107]) to 

efficiently obtain such documents. Multiple searches are performed using as search terms 

all the identifiers in the N-subgraph, as well as some percentage of the top weighted 

terms from the combined word weight vector (translated to their unstemmed, original 

form), and the top results for each search are retrieved (e.g. top 50 or 100).  Finally, all 

the result sets of all the searches are combined and we compute the cosine similarity 

value between the combined word weight vector and each element of this combined 

result set and rank (sort) descending based on the cosim value.

The following then is a restatement giving the detailed steps of the procedure for 

retrieving documents relevant to an identifier whose node is present in the LinkHub 

relational graph:

1. Extract the identifier’s N-subgraph for some value of N. Larger values of N can 

potentially provide greater information, but past 2 could be negligible or too 

indirect and unreliable.

2. Assign the identifier's node (and synonym nodes) weight 1.0 and then propagate 

weights throughout the rest of the N-subgraph’s nodes by downscaling based on 

relationship types and adding all in-link weights at each node (as explained above 

in section 5.2). Thus, each node in the N-subgraph obtains a weight in this way.

3. Determine all the documents linked to identifier nodes in the N-subgraph and 

assign them the same weight as the node they are linked to.
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4. Form a word weight vector for each identifier node-linked document as described 

in section 5.3 scaled (multiplied) by their document’s weight and add all of these 

to form the combined word weight vector. Eliminate some percentage of the 

smallest weighted terms. The combined word weight vector is used for ranking 

documents by the cosine similarity measure.

5. Use some percentage of the top-weighted terms (in their original, unstemmed 

form) from the combined word weight vector, along with all the identifiers of 

nodes in the N-subgraph, as “base searches”, i.e. perform individual searches for 

each of them against the desired document collection (e.g. the web or PubMed). 

Combine the results of all the base searches together in one long list and score 

each document in this list for its cosine similarity value against the combined

word weight vector; order descending by cosine similarity values. The end result

is the ranked list of documents, where the higher a document is ranked the more 

specific and relevant it should be to the identifier which was the object of the 

query.

Essentially, this procedure can be viewed as systematically exploring the “concept 

space” around a given biological identifier and the display of results can present this as 

follows. For each ranked document, all the base searches which independently retrieved it 

can be listed for it ordered by relevance as determined by the search engine. The base 

searches that retrieved on average the most relevant documents can also be presented

separately, ordered by average cosine similarity value of all documents they returned. 

These base searches returning on average the most relevant documents are key concepts 
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related to the given identifier and are of interest in their own right as succinct snippets of 

what the identifier is “about”; they could be called “semantic signatures”. See figure 10 

and appendix 4 for examples of this way of displaying results. The next two sections give 

examples of this procedure, first against the web and then against the biomedical 

scientific literature, to make it more clear and demonstrate that it gives reasonable, good 

results.

5.5 Improved Search for Web Documents Related to a 

Proteomics Identifier

The basic procedure presented in section 5.4 above was implemented to retrieve 

documents from the web relevant to a proteomics identifier. The Yahoo search engine, 

via its web API, is used to perform the base searches to retrieve the documents to rank. 

Other search engines, such as Google, could also be used via their web API’s but Yahoo 

was chosen because of its generous daily search limits, flexibility, and ease-of-use 

(Yahoo is also generally respected as a search engine and returns good results). As an 

example, figure 9 gives the LinkHub view for UniProt P26356, which shows its 1-

subgraph and identifier node-linked documents (and their weights) which together form 

the training set; figure 10 shows the results of this enhanced web search for it. P26364 is 

a yeast mitochondrial protein named ‘Adenylate kinase 2’. At top left in figure 10 are 

small screenshots of the web pages of the results and the spawned base searches that 

retrieved them (sorted descending by the average cosine similarity value of the 

documents they retrieved), reproduced in tabular format at bottom and right respectively 

for clarity. The two center columns in the table at bottom in figure 10 compare the overall 

rank given by the combined word weight vector with Yahoo’s rank (out of 40 and for the 
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search term given in the rightmost column); the leftmost column is the page title as 

returned by Yahoo. While some of the results are more generally relevant, all of them are 

clearly relevant (i.e. documents of a biological nature and in the right sub-area of yeast 

genomics and proteomics, not unrelated documents of conflated senses of the identifier 

such as product catalog codes, etc.), and some, such as the ones with ‘ADK’ and 

‘ADK_lid’ in their titles, are very closely related and relevant. Considering the top 20 

spawning searches, again, while some are more generally relevant all are clearly 

biologically relevant and many of them, such as “kinase”, “mitochondrial”, “adenylate”, 

“adk2”, “saccharomyces”, and the searches which are biological identifiers (PFAM, GO, 

etc.) are very closely related and relevant and give a very succinct overview of key 

aspects of the protein.

Interestingly, the direct Yahoo search using the UniProt identifier itself, i.e. 

P26364, was one of the lowest ranking searches (not even shown in the figure). In a 

manual inspection of the Yahoo search results for P26364 (on 2/27/2006), almost half (17 

/ 40) of the first 40 results clearly had absolutely nothing to do with the yeast protein 

P26364 but were related to other non-biological senses of the text P26364. In contrast, in 

the LinkHub-derived results for P26356 all of the first 40 were clearly related and the 

first unrelated result isn’t found until position 72. Thus, it seems safe to conclude that the 

LinkHub-derived results for P26364 are superior to the Yahoo results.
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Fig. 9. The LinkHub web interface view for UniProt protein P26364 (same as in figure 6) 
with arrows pointing to the identifier node-linked documents (hyperlinks) and giving their 
weights.
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Fig. 10. Related documents retrieved for UniProt P26364 using the procedure of section 5.4
and top searches retrieving them.
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5.6 Improved Search of the Biomedical Scientific Literature for 

Documents Related to a Proteomics Identifier

While enhanced web search for proteomics identifier-related documents is important, 

another important and relevant corpus to provide improved access to is the biomedical 

scientific literature. PubMed [40] is a free search engine to the biomedical literature 

offered by the United States National Library of Medicine as part of the Entrez 

information retrieval system. PubMed indexes and provides search access to, among a 

few other sources, the MEDLINE (citations from the mid 1960s to present), and 

OLDMEDLINE (pre mid 1960s citations) databases as its core content. PubMed is the 

primary place where researchers search and access the biomedical literature. In PubMed, 

articles are indexed and searchable by words in the title, abstract, author names, journal 

name, date of publication, etc. (the full text of articles is not searchable, however). In 

addition, articles are annotated with terms from the Medical Subject Headings (MeSH) 

standardized biomedical vocabulary [108], and search may also be done by MeSH terms. 

Some biological database identifiers are attached to some PubMed citations (citations 

where the database identifier was referenced somewhere in the full text of the article), but 

these are manually added and are limited in number. In particular, SwissProt (curated, 

smaller portion of UniProt) identifiers are attached to some citations (however not all 

SwissProt identifiers are) but TrEMBL (automatically generated, much larger portion of 

UniProt) identifiers are not; in general, SwissProt database entries list a small number of 

related PubMed citations and the PubMed records for these citations are the ones with 

attached SwissProt identifiers. There exists no access to PubMed, however, which allows 

high-quality automated retrieval of relevant citations for proteomics identifiers such as 
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SwissProt or TrEMBL, and such access would be practically useful if available. 

Interestingly, the highly touted Google Scholar [109] (Google’s search engine of the 

academic literature) does return some results for searches of biological identifiers such as 

P26364, but the results it returns are negligible (often no results at all) and unsatisfactory. 

This thesis demonstrates how such access can be provided, and empirically measures its 

performance using a curated, “gold-standard” bibliography of PubMed citations related to 

particular yeast proteins.

The PubMed database can be acquired for free from the National Library of 

Medicine. It consists of more than 500 XML files which together contain over 

15,000,000 literature citations from over 4800 biomedical journals and consume several 

hundred gigabytes of disk space uncompressed; updates are periodically released and can 

be downloaded to maintain timeliness, with full releases done yearly. For this thesis, the 

PubMed release covering literature citations up to the end of 2005 was obtained and used 

for all applications and experiments described below. The open source program Swish-e 

[110, 111] was used to index the PubMed XML and provide basic keyword-based search 

access to it (i.e. Swish-e plays the same role Yahoo did in the web search application 

described in section 5.5 above). Using Swish-e to execute base searches of PubMed then, 

it was straightforward to implement the basic procedure (described in section 5.4 above) 

to retrieve PubMed citations relevant to a proteomics identifier and this was done. As an 

example, a text-formatted version of the top 20 results (and the base searches pulling in 

the most relevant documents on average) of a search for relevant citations for UniProt 

P26364 (the same identifier whose web search results were shown in figure 10) is given 

in appendix 4. In manually perusing the results they seem reasonably good --- they are all 



97

about yeast and/or protein kinases, which is what one would intuitively expect since 

P26364 is a yeast adenylate kinase protein. Again, it is not possible to do an automated 

search of PubMed for documents related to P26364, so we cannot directly make a 

comparison of the LinkHub-derived results (shown in appendix 4) and the results of a

simple search for ‘P26364’ as was done for the Yahoo web search application in section 

5.5 above. However, we can examine the citations which have been manually attached to 

P26364 and they are shown in figure 11.

Fig. 11. Manually annotated PubMed citations for UniProt P26364 on 7/27/2006.

There are only 4 PubMed citations for P26364, and in fact citations 1 and 2 are really 

more generally relevant (they are about the yeast genome/proteome as a whole or in 

large, not specific to P26364), so there are really only 2 specifically relevant citations, 
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items 3 and 4. Also note that citations 3 and 4 correspond to results 13 and 7 respectively 

in the LinkHub-derived results given in appendix 4. So using LinkHub we were able to 

both find the manually annotated relevant citations at a very high ranking, but also many 

other specifically relevant citations. Again, it can be argued that the LinkHub-derived 

results are superior.

5.7 Empirical Performance Results of LinkHub-based Retrieval 

of Biomedical Scientific Literature Documents Related to a 

Proteomics Identifier

While the LinkHub-derived search results from the web and PubMed in the examples 

above are typical and seemed to provide good results, ideally we would like empirical

measures of how well information retrieval based on word weight vectors derived from 

the LinkHub relational graph works. Fine-grained judgments about the relative relevance 

rankings of documents are difficult, e.g. in appendix 4 is result 7 really more relevant 

than result 13, or vice versa --- a difficult, subjective call to make. It is more reasonable 

and straightforward, however, to accurately make coarse-grained judgments about 

relative relevance. For example, while it is difficult to say which of results 7 or 13 should 

really be ranked higher, we can confidently say that they are both more relevant to 

UniProt P26364 than articles about, say, earthquakes, global warming, or even more 

related areas such as medical ethics or surgical procedures, and should thus be ranked 

higher than articles on such topics. The goal will be to form separate groups of 

documents where the relative ordering of the groups is clear. In other words, if group A 

contained appendix 4 results 7, 13 and other similar citations while group B contained 
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documents about earthquakes, then we can correctly say that all of the group A 

documents should be ranked above all of the group B documents; we cannot, however, 

say anything about the relative rankings of documents within group A or group B.

Such fine grained distinctions among documents’ relevance are also not really 

necessary or useful to users. Practically, a user, depending on how committed they are to 

rooting out relevant results, will only peruse a small portion of the results at the top of the 

ranked list of results. A casual user might only look at the first results page (maybe 25 

documents), while progressively more intent users might look at 50, 100, or 200 results. 

A very committed user, say someone preparing to write a literature review on some topic, 

might look at 500 to 1000 results, but likely not more. Also, while it is ideally better to 

have the most relevant results ranked highest, practically, whether the most relevant 

results are ranked at the top or at the bottom of the subset of results that the user looks at

does not matter --- getting the relevant results somewhere in the top 50, 100, or 200 (or 

however many results the user is willing to look at) is what really counts.

Guided by these ideas then, we test the performance of the LinkHub-based 

information retrieval of PubMed as follows. There exist manually curated bibliographies 

of PubMed citations relevant to particular genes or proteins. UniProt itself provides

citations in its protein entries, but there are relatively few and also it is better to use a 

UniProt-independent bibliography (since web pages of UniProt entries are used in 

constructing the word weight vectors). A better bibliography is available from the SGD 

(yeast genome database) website and provides a large number of relevant citations for 

yeast proteins; the file is named gene_literature.tab and is available from the SGD ftp 

directories (linked to from the SGD web site) [112]. The performance test, then, is based 
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on gene_literature.tab. In addition to gene_literature.tab, we also form a group of 

PubMed citations which are likely to be completely irrelevant to proteomics (this group is 

called the out group). The out group is formed by sampling random citations from 

PubMed which do not appear in gene_literature.tab or as a citation in any UniProt 

(SwissProt or TrEMBL) entry. For a given yeast protein, its associated citations from 

gene_literature.tab are called its in group, and citations associated with other yeast 

proteins are called its mid group. It is reasonable to assert, then, that for any given yeast 

protein the correct relevance ranking of its in, mid, and out group is: in – mid – out.

Again, we cannot assert anything about the relative citation rankings within the in, mid, 

or out groups, but we can confidently assume that all in group citations should be more 

relevant than all mid group citations, which should themselves all be more relevant than 

all the out group citations. To measure performance, then, we construct the word weight 

vector for a given yeast protein and use it to score and rank all the in, mid, and out group 

citations; the deviation of the word weight vector’s ranking from the assumed correct 

ordering of in – mid – out is then the measure of performance (the closer to the assumed 

correct ordering, the better). Practically, however, note that the most important thing is 

that the in group be correctly ranked ahead of the mid and out groups, and the correct 

relative ordering of the mid and out groups is of secondary importance; we thus focus on 

assessing the ranking of the in group documents.

5.7.1 Concrete Measures of Performance

To concretely measure the deviation of a yeast protein’s word weight vector ranking of 

citations from the assumed correct ranking we use the area under the receiver operating 

curve (abbreviated ROC); this area is itself abbreviated AUC [113-115]. The ROC 
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originated in signal detection where it was used to characterize the tradeoff between hit 

rate and false alarm rate over a noisy channel. To generate a ROC for a binary classifier 

over a set of test instances, one first uses the classifier to make predictions for all the 

members of the test set and then rank order these instances descending by the scores 

given by the classifier (which might, e.g., be probabilities but in our case are cosim 

values); the higher an instance is ranked the more likely it is that it is truly a positive 

instance. One generates an ROC from this ranked list of test instances, then, by 

successively forming larger subsets of the top ranked instances (starting from the subset 

containing the single highest ranked instance) and then plotting the fraction of all the true 

positives (TP) in the subset versus the fraction of all the true negatives (TN) in the subset. 

The ROC thus shows you the tradeoff of true positive rate (good) versus false positive 

rate (bad). Equivalently, the ROC shows the tradeoff in sensitivity of a binary classifier 

for varying values of 1 – specificity. The ROC is a good measure in our case because it 

can measure performance of a classifier without regard to class distribution or error costs, 

neither of which we know; i.e. for a given protein we don’t know the ratio of truly 

relevant citations to not relevant ones, nor do we know the relative costs of false/true 

positives and false/true negatives. The ROC can be summarized in a single measure by 

taking the area under it, i.e. AUC; AUC can vary between 0 and 1, where larger is better 

(i.e. 1 means perfect predictive accuracy, 0.5 is worst and represents random chance, 

while 0 means perfect inverse prediction accuracy). The AUC can be interpreted as the

probability that a randomly chosen positive instance will be ranked higher than a 

randomly chosen negative instance by the classifier. Figure 12 above illustrates these 

ideas through example ROCs.
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Fig. 12. Example ROC curves. The green curve indicates better classifier performance than the 
black curve. The arrows indicate how the AUC is determined. The yellow “smiley face” in the 
upper left corner represents an ideal classifier, one which predicts all true positives and no false 
positives.

Midway between the full ROC and the single number summary of it, AUC, one can 

consider the area under different parts of the ROC. For example, the 0.1 AUC would 

measure the partial area under the ROC up to a false positive rate of .1 (i.e. up to an X 

axis value of .1). In general, the 100
N  ROC measures the area under the ROC curve up 

to false positive rate 100
N , and the value can range from 0 (worst) to 100

N  (best).

Since the performance of search results in the top of the rankings is so important, 

measuring  100
N  AUC for small values of N can better illuminate the performance in 
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the top of the rankings. We thus measure 100
N AUC for values of N in the range 1 to 

100 (the value for 100 is simply the normal, full AUC) for the in group, e.g. for the in

group 100
N  AUC calculation the in group citations are like a classifier’s 1 values while

the mid and out group citations are combined to be like a classifier’s 0 values. We will 

specifically discuss the results of the .05 (i.e. 100
5 ) and 1.0 (i.e. normal, full) AUC 

values, which are representative respectively of the performance at the important top of 

the results and of the overall performance.

In addition to simply measuring AUC values we would also like to know if tried 

optimizations, such as adding in weighted PFAM and GO pages, lead to statistically 

significant improvements in performance (as measured by AUC values). For example, 

even if some improvement is observed when PFAM and GO pages are added in addition 

to just the base UniProt page in forming the combined word weight vector, is this 

improvement statistically significant or instead likely due to chance? As the section 

below on experimental protocol describes, we will be running tests for many UniProt 

proteins, each multiple times under different conditions (e.g. different optimizations). 

Essentially, what we want to know is if the mean AUC values from the sample of 

UniProt proteins under some condition A (e.g. word weight vector from base UniProt 

page plus weighted GO and PFAM pages) is statistically significantly different from that 

sample of UniProt proteins under some other condition B (e.g. word weight vector from 

only the base UniProt page). This problem is exactly the problem solved by the paired 

Student’s t-test [116] which will thus be used for statistical evaluation of the results. The 

AUC results and statistical tests of significance on them are given below in section 5.7.5.



104

5.7.2 Goals of the Experiments

The experiments with gene_literature.tab are being conducted to answer the following 

questions:

 To get hard data on how well the word weight vectors perform on average at 

retrieving citations from the scientific literature relevant to UniProt proteomics 

identifiers. How close do they come to achieving perfect classification accuracy, 

i.e. a value of 1.0 for the full AUC and 0.05 for the 0.05 AUC?

 The basic procedure given in section 5.4 described how the documents in an 

identifier’s N-subgraph are weighted and added together to create the combined 

word weight vector used for scoring and ranking documents. An important 

question is whether adding in multiple, related documents actually helps. PFAM 

and GO are key related concepts for proteins, and as a practical proof-of-concept 

we explore them. In particular, can you improve retrieval by adding in related, but 

not synonymous, documents such as GO and PFAM or is it better simply to just 

use the direct pages of an identifier (e.g. only the UniProt entry page) and its 

synonyms. If adding in non-synonymous but related pages does help, then what 

are the optimal weights for this; in particular, the values of .75 for PFAM and .5 

for GO used in sections 5.5 and 5.6, while chosen somewhat arbitrarily, gave 

pleasing results but what are the optimal values to weight PFAM and GO pages?

 To test whether certain enhancements to the basic procedure can improve 

performance. In particular, one enhancement that dramatically enhanced 

performance as will be shown below was a pre-IDF step of LinkHub relational 
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subgraph identifier node-linked documents against document frequency statistics 

computed for the databases they came from.

5.7.3 Pre-IDF Step

The Pre-IDF step (or pre-inverse document frequency step) enhancement to the basic 

procedure of section 5.4 is one novel contribution of this thesis and takes account of the 

fact that, for a given proteomics identifier we not only know its subgraph and the 

documents linked to identifier nodes in it, but we also know the subgraphs and identifier 

node-linked documents for all other proteomics identifiers and we can leverage this “big 

picture” information to improve ranking accuracy for all proteomics identifiers. In 

particular, we have information about the subgraphs and identifier node-linked

documents for all UniProt identifiers. For a given proteomics identifier it is the relevant 

documents for all the other proteomics identifiers that will be most similar to the relevant 

documents of the given proteomics identifier and thus the most difficult to correctly 

discriminate. In essence, we want to create word weight vectors for all proteomics 

identifiers that are maximally different from one another while at the same time each 

being correctly as specifically relevant and discriminating as possible.

Section 5.3 above described formally IDF re-weighting of word weights, and the 

idea here is simply to do such IDF re-weighting twice, ultimately as usual against the 

corpus (e.g. the web or PubMed) you are interested in searching but also first against 

document frequencies computed for all (or a reasonable sample of) web pages of the 

same type as a given web page. Thus, for example, UniProt (or PFAM, GO, etc.) has

many individual, identifier-specific pages which can together be considered a corpus, and 

we can compute document frequency statistics for them and use these statistics to do IDF 



106

re-weighting of individual UniProt (or PFAM, GO, etc.) web pages. In step 4 of the basic 

procedure given in section 5.4, before adding together the separate word weight vectors 

for web pages linked to identifiers in the N-subgraph, for each such separate word weight 

vector perform an IDF re-weighting of its word weights against the document frequencies 

of its corresponding type (if available). For example, if a word weight vector was 

generated from a Pfam page, then re-weight its words by an IDF step against document 

frequencies computed for all Pfam pages. This has the effect of down-weighting words 

which occur frequently in pages of a type (e.g. protein or sequence in UniProt pages) and 

are thus less discriminating while up-weighting words that occur infrequently (which are 

intuitively the most distinguishing words). For completeness, step 4 of section 5.4 

becomes as follows:

4 Form a word weight vector for each identifier node-linked document as described 

in section 5.3 scaled (multiplied) by their document’s weight. If document 

frequency statistics are available for a document’s type, perform IDF re-weighting 

of the document’s word weight vector against those document frequency statistics

(pre-IDF step). Add all documents’ word weight vectors to form the combined 

word weight vector. Eliminate some percentage of the smallest weighted terms. 

The combined word weight vector is used for ranking documents by the cosine 

similarity measure.

Note that the pre-IDF step also has the added benefit of effectively filtering out 

words which appear as part of the “template pattern” of pages of a type and are thus not 
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real information-bearing terms. For example, all UniProt pages follow a common 

template, e.g. have the text “UniProtKB Entry” and “NiceProt view” at the top, etc., and 

words which are constants in the template are effectively filtered out by the pre-IDF step 

since they occur in every page and thus Log 







D

N
 is 0 because D = N. Thus, there is no 

need to write special, type-specific HTML parsers to eliminate such constant template 

content, as it is handled simply as a by-product of the pre-IDF step. In general, web pages 

can be difficult to deal with for information retrieval, as they have many more 

extraneous, unrelated terms than well-focused English text, e.g. scientific papers, 

newspaper and magazine articles, etc., and the pre-IDF step can thus be especially useful 

for information retrieval using web documents as queries. For example, all UniProt entry 

pages contain cross-references to other databases, and the name of the database that is 

being cross-referenced to is given in the page (and often there are multiple cross-

references to the same database, so that database’s name will appear multiple times). 

Without the pre-IDF step, these database names bubble to the top as the most highly 

weighted words (because they occur with such high frequency in the UniProt pages and 

are also relatively rare in PubMed, against which the usual IDF step is done, because they 

are relatively modern terms). This is clearly incorrect and the pre-IDF step severely 

down-weights (or eliminates altogether) these database names.

5.7.4 Experimental protocol

We perform experiments on random samples of UniProt identifiers. UniProt consists of 

two parts, Swiss-Prot and TrEMBL (which stands for “translated embl” where embl is a 

DNA sequence database). Swiss-Prot is the much smaller part, but is of higher quality, 
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having been manually curated. TrEMBL is much larger than Swiss-Prot and is of lower 

quality due to its being generated by automated processes. We do separate experiments 

for SwissProt and TrEMBL. For SwissProt, we pick a random set of 200 identifiers 

which have GO and PFAM annotations and at least 20 citations in gene_literature.tab; for 

TrEMBL we do the same but only pick 100 random TrEMBL identifiers (since TrEMBL 

is lower quality I was afraid it might not be possible to find a full 200, so I settled for 100 

which is still a good sized sample). We perform a grid search optimization procedure, at a 

granularity of 0.1 for all variables being optimized, to find the optimal values for PFAM 

documents’ weight, GO documents’ weight, and the percentage of features (i.e. words) to 

keep in the word weight vectors (see step 4 of the basic procedure given in section 5.4); 

UniProt entry pages are always weighted 1.0. We might hypothesize that PFAM and GO 

pages would be more likely to improve information retrieval performance for TrEMBL 

pages, given that TrEMBL pages have less information since they are not manually 

curated; also, PFAM and GO pages might not improve (or improve less) performance for 

SwissProt pages since they are high quality, manually curated pages and thus are likely to 

be fairly complete statements about the proteins they describe (and so PFAM and GO 

pages might, in effect, be redundant and not add information). The experimental results, 

described next, answer these questions. The code to do these experiments was written in 

Perl, and borrowed code from the AI::Categorizer Perl module 

(http://search.cpan.org/~kwilliams/AI-Categorizer-0.07/) and the Lingua::Stem Perl 

module (http://search.cpan.org/dist/Lingua-Stem/).



109

5.7.5 Results

TrEMBL

Appendix 5 contains 2 tables giving respectively the average .05 and 1.0 AUC values 

(sorted descending by AUC value, then by percentage features kept) for the 100 

randomly sampled TrEMBL proteins and for different trials with different values for the 

four parameters GO Wt, PFAM Wt, Perc Features Kept, and pre-IDF applied. .05 AUC 

is indicative of performance at the important top of the results ranking, while 1.0 AUC is 

simply the normal, full AUC value and indicates overall performance. Figure 13 below 

reproduces the important result rows from appendix 5, and these and appendix 5 are the 

basis of the discussion that follows below.

Fig. 13. Important .05 and 1.0 AUC results for 100 randomly sampled TrEMBL proteins.
The overall optimal .05 AUC is achieved by use of the pre-IDF step and with a PFAM 
weight of 0.2 and a GO weight of 0.0. The overall optimal 1.0 AUC is achieved by use of 
the pre-IDF step and with a PFAM weight of 0.1 and a GO weight of 0.0.

The first thing to note is how the pre-IDF step separates the trials into two large 

groupings; for both .05 and 1.0 AUC, any trial, regardless of the values of the other 

parameters, that used the pre-IDF step gave a better result than any trial that did not 



110

(again, regardless of any other parameters), so the pre-IDF step seems to be clearly 

advantageous for performance. Also, the AUC results seem robust to changes in the 

percentage of features kept, i.e. for a given PFAM and GO weighting the AUC values for 

all the values of percentage features kept tried (1.0 down to 0.1) do not change much and 

most give the same value. There is a trend, however, for larger values of percentage 

features kept to give slightly better AUC values, but generally 1.0 down to 0.5 or 0.4 for 

percentage features kept result in the same AUC values; very small values for percentage 

features kept of 0.1 or 0.2 do show some drop-off but it seems marginal. Keeping more 

features requires more computation time since the computation time for the cosine 

similarity measure will increase linearly with the number of features, i.e. length of the 

word weight vectors. Thus, the tables in appendix 5 indicate that only a small percentage 

of the features need to be used to achieve good performance; 0.5 or 0.4 probably 

represent the best tradeoff between computation time and performance. The results that 

follow will be based on using a value for percentage of features kept of 0.5.

To quantify the performance increase obtained by the pre-IDF step, let us look at 

the average .05 and 1.0 AUC values for the base case when only a protein’s UniProt 

TrEMBL page is used to construct the word weight vector (i.e. PFAM Wt and GO Wt are 

0). Note that the top possible scores for the .05 and 1.0 AUC values are respectively .05 

and 1.0. From figure 13 (and the tables in appendix 5), for this case the average .05 and 

1.0 AUC values without the pre-IDF step are respectively 0.01791437 and 0.849313752

and with the pre-IDF step are respectively 0.03131128 and 0.920262344. Thus, the pre-

IDF step increases the .05 AUC value 75% and the 1.0 AUC value over 8%. The 

percentage increases in AUC are greater the farther you go to the left (i.e. as false 
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positive rate decreases) in the ROC; for example, the .01 AUC (not shown) increases 

over 92%. The AUC increase is thus concentrated in the left portion of the ROC, which is 

what is desired.

While the above showed that the pre-IDF step does improve performance, let us 

now look at the addition of GO and PFAM pages and see if they improve performance. 

Looking at figure 13 and the tables in appendix 5 we can see that GO pages do not help 

and in fact their addition slightly decreases performance (for both .05 AUC and 1.0 AUC 

and whether or not the pre-IDF step was done). On the contrary, the addition of PFAM 

pages does boost performance, albeit not as much as the pre-IDF step. For the .05 AUC

and with the pre-IDF step, a weight of 0.2 for PFAM pages was optimal and this gave a 

.05 AUC value of 0.03226933; the pre-IDF step plus addition of PFAM pages weighted 

0.2 thus increased the .05 AUC value 80%, so the addition of the PFAM pages increased 

the .05 AUC value an additional 5% over the baseline value. Similarly, for the 1.0 AUC 

and with the pre-IDF step, a weight of 0.1 for PFAM pages was optimal and this gave a 

1.0 AUC value of 0.927418459; the pre-IDF step plus addition of PFAM pages weighted 

0.1 thus increased the 1.0 AUC value 9.2%, so the addition of the PFAM pages increased 

the 1.0 AUC value a modest additional 1.2% over the baseline value.

Without the pre-IDF step, the addition of PFAM pages is optimal at larger weight 

and gives a larger performance increase over baseline performance of only using the 

UniProt TrEMBL page (i.e. no pre-IDF or addition of GO or PFAM pages). Figure 13 

and the tables in appendix 5 show the .05 AUC and 1.0 AUC scores to be 0.01791437 

and 0.849313752 respectively for when GO or PFAM pages are not added and no pre-

IDF step is done. For .05 AUC and no pre-IDF step, adding PFAM at weight 0.6 (the 
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highest weight tried in the experiment, so possibly going higher would have further 

increased performance) gave the best result of 0.02052796 for the .05 AUC, an increase 

of almost 15%. Similarly, for 1.0 AUC and no pre-IDF step, adding PFAM at weight 0.4 

gave the best result of 0.860134119, an increase of 1.3%. Again note that it is the 

performance at the top of the results, corresponding to the left region of the ROC (which 

the .05 AUC measures), which is most important. Thus, if data were not available to 

perform the pre-IDF step, the addition of PFAM pages can be a useful alternative to 

increasing performance (albeit by not as much).

To statistically validate the conclusions reached above which looked at average 

AUC values, we use the Student’s paired t-test over the 100 randomly sampled TrEMBL 

proteins; we use the one tail P-value because our hypothesis is that one of the two test 

conditions (e.g. pre-IDF step versus no pre-IDF step) will result in an improved AUC 

value. Appendix 6 contains the results of the t-tests. All tests returned highly significant 

P-values, with the largest being 0.002952176 which is still much smaller than the 

commonly accepted .05 level of significance. Thus, we can conclude that the addition of 

PFAM pages appropriately weighted and the use of the pre-IDF step both significantly 

increase information retrieval performance as measured by AUC values for UniProt 

TrEMBL identifiers.

Swiss-Prot

Appendix 7 contains 2 tables giving respectively the average .05 and 1.0 AUC values 

(sorted descending by AUC value) for the 200 randomly sampled Swiss-Prot proteins and 

for different trials with different values for the three parameters GO Wt, PFAM Wt, pre-
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IDF applied. Perc Features Kept was set at the constant 0.5 since the performance 

doesn’t vary significantly when it is changed and 0.5 was used as the basis of the 

comparisons for TrEMBL above (and is thus used for all comparisons here too). Figure 

14 below reproduces the important result rows from appendix 7, and these and appendix 

7 are the basis of the discussion to follow.

Fig. 14. Important .05 and 1.0 AUC results for 200 randomly sampled Swiss-Prot proteins.
The overall optimal .05 AUC is achieved by use of the pre-IDF step and with a PFAM 
weight of 0.1 and a GO weight of 0.0. The overall optimal 1.0 AUC is achieved by use of 
the pre-IDF step and with a PFAM weight of 0.1 and a GO weight of 0.0.

The same as for TrEMBL the pre-IDF step separates the trials into two large groupings; 

for both .05 and 1.0 AUC, any trial, regardless of the values of the other parameters, that 

used the pre-IDF step gave a better result than any trial that did not (again, regardless of 

any other parameters), so the pre-IDF step again seems to be clearly advantageous for 

performance.

To quantify the performance increase obtained by the pre-IDF step for Swiss-Prot 

proteins, let us look at the average .05 and 1.0 AUC values for the base case when only a 

protein’s UniProt Swiss-Prot page is used to construct the word weight vector (i.e. PFAM 

Wt and GO Wt are 0). From figure 14 and the tables in appendix 7, for this case the 
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average .05 and 1.0 AUC values without the pre-IDF step are respectively 0.024920735

and 0.897098083 and with the pre-IDF step are respectively 0.035667273 and 0.950253129. 

Thus, the pre-IDF step increases the .05 AUC value 43% and the 1.0 AUC value 6%. 

Again, the percentage increases in AUC are greater the farther you go to the left (i.e. as 

false positive rate decreases) in the ROC. The AUC increase is thus concentrated in the 

left portion of the ROC, which is what is desired. The percentage increases for Swiss-

Prot, while still substantial, are not as large as for TrEMBL and this is consistent with the 

fact that Swiss-Prot, being manually curated, is of higher quality and thus there is less 

need or room for improvement compared to TrEMBL However, TrEMBL is much larger 

than Swiss-Prot and generated by automated processes, and it is thus practically very 

useful that TrEMBL can be improved more, reaching close to parity with Swiss-Prot. The 

improvements in both mean .05 and 1.0 AUC from the pre-IDF step are also both 

statistically significant as is shown in appendix 8.

As was conjectured above, the addition of PFAM and GO pages does not help 

improve performance for Swiss-Prot as much as for TrEMBL. First, the same as for 

TrEMBL, the addition of GO pages does not help and in fact decreases performance

slightly. The addition of PFAM weights at small weight very slightly increases average 

.05 and 1.0 AUC for all cases compared, however all but one of these increases are not 

statistically significant (see appendix 8 for details). Thus, the addition of PFAM pages 

cannot be said to significantly improve performance (although they don’t decrease it 

either).
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5.7.6 Discussion

Overall, for a small PFAM page weight (and no GO pages added) and performing the 

pre-IDF step we achieve .05 AUC and 1.0 AUC scores of 0.03226933 and 0.927225042

respectively for TrEMBL and 0.035710069 and 0.950538504 respectively for Swiss-Prot. A 

very recent study [117] (covered in more detail in the next chapter) constructed classifiers 

for predicting relevance of PubMed documents for various clinical medicine themes. This 

study used state of the art support vector machine classifiers trained on relatively large, 

manually curated and respected bibliographies of articles in various clinical medicine 

disciplines, and used text from the article title, abstract, journal name, and MeSH terms 

for features. In contrast, the experiments in this thesis only used the abstract text for 

features, used only relatively small training sets (i.e. the single UniProt page plus a few 

GO and PFAM pages), and, in comparison to support vector machines, used only a fairly 

basic classifier model (i.e. word weight vectors compared with the cosine similarity 

measure). In addition, it should be pointed out that a small number of the citations in the 

yeast gene_literature.tab bibliography are really not directly related to the yeast proteins 

they were assigned to, but are more generally related; for example, the first citation in 

figure 11 (“Global Analysis of Protein Expression in Yeast”) is assigned to several 

proteins in gene_literature.tab. Thus, these more general citations really should be ranked 

lower even though the assumption of the experiments is that all gene_literature.tab 

citations should be ranked highest; the AUC values obtained for these experiments on the 

LinkHub-based information retrieval thus understate slightly the true performance. In 

spite of these seeming deficiencies, it is notable that the procedure of this thesis achieved 

average 1.0 AUC scores of .927 and 0.951 for TrEMBL and Swiss-Prot respectively in 
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ranking PubMed documents for their relevance to UniProt proteins which is better than or 

negligibly smaller than the Aphinyanaphongs et al 2006 study which achieved a 1.0 AUC 

score of 0.893 on one of the clinical medicine bibliographies and 0.932 and 0.966 on two 

others2.

While it was shown that PFAM pages improve performance, it was initially 

expected that GO pages would also and this turned out not to be the case. Qualitatively, 

when you look at typical examples of PFAM and GO pages the PFAM pages seem more 

information rich; they generally have several fairly detailed and long but concise 

paragraphs describing important functional and other information about their PFAM 

protein domain, and have less extraneous unrelated terms. GO pages, on the contrary, 

have shorter and less detailed textual descriptions and more extraneous terms (e.g. all the 

higher level terms in the GO hierarchy are given). Thus, in retrospect it makes sense that 

PFAM pages would be better at improving performance and this is borne out by the 

results presented here. In general, UniProt, GO, and PFAM web pages (and for the most 

part web pages in general, which often have e.g. advertisements, navigation text, etc.) 

have many more extraneous, unrelated terms than well-focused English text (e.g. paper 

abstracts, introductions, etc.) and it is noteworthy the reasonably good performance 

achieved in spite of this.

The pre-IDF step was shown to be the most effective optimization for increasing 

performance. In fact, this idea is generally useful, as many pages on the web are 

generated by templates and are on common topics. For example, the CNET web site has 

                                                
2 Note that this isn’t an exact “apples to apples” comparison but it is still a reasonable comparison to make. 
Both the study in this thesis and the Aphinyanaphongs et al 2006 study used the same objective measure of 
performance, namely the AUC, and both achieved comparable, nearly perfect results (and thus neither 
leaves much room for significant improvement) on the same kind of classification task (i.e. ranking 
PubMed citations for relevance), although not on the exact same tasks.
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in-depth product reviews and information for many types of electronics products at 

http://reviews.cnet.com/. Thus, for example, there are separate CNET pages for each 

different digital camera or mp3 player, and they all follow the common CNET template. 

If we wanted to search the web for pages relevant to a particular digital camera (or mp3 

player, etc.), we could compute document frequencies for all CNET digital camera (or 

mp3 player, etc.) pages and do a pre-IDF step against it for the word weight vector 

formed from the CNET page for a single, particular digital camera (or mp3 player, etc.) If 

and when the semantic web becomes widespread, and semantic web metadata becomes 

commonly associated with standard web pages and other documents, these ideas could be 

even easier to use and widely applicable in an automated way. Even now, there exist 

“tagging” systems where people can attach short text description “tags” to web 

documents, with a prominent site being Connotea [33] which is run by the journal Nature 

and focuses on science and technology. All of the ideas of this thesis could be applied in 

a fairly straightforward way to build effective word weight vectors for the tags of 

Connotea and other tagging sites, to be used for fine-grain retrieval of documents relevant 

to the underlying concept of the tags.

The pre-IDF step idea could also be used as part of a coarse-to-fine cascade of 

classifiers for possibly better performance. For example, to find pages relevant to a given 

UniProt protein, we could first construct a combined word weight vector from all (or a 

sample of) UniProt entry pages. This combined UniProt word weight vector would 

presumably rank pages that are in the domain of proteomics higher than non-proteomics 

pages. The results of this initial UniProt word weight vector could then be filtered below 

some threshold. The remaining, non-filtered ranked results could then be ranked again by 
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the word weight vector (modified by the pre-IDF step against UniProt document 

frequencies) specific to the given UniProt protein’s word weight vector. Higher-level 

word weight vectors could also be used, e.g. constructed from all of PubMed and ranking 

highly documents that have a biomedical theme.

We could also likely do something like the pre-IDF step at the higher levels, e.g. 

to make a whole UniProt word weight vector as different as possible from one for all of 

PubMed and as specific as possible for proteomics. Here, we might do it differently since 

the situation is not a single page of a given type but rather two different large sets of 

documents where effectively one (all the UniProt pages) represents a subtopic, i.e. 

proteomics as a subtopic of biomedicine, of the other (all of PubMed). It might make 

sense here to consider relative document frequencies between the two document sets, e.g. 

the weight of word w i in the whole UniProt word weight vector could be reweighted by 

multiplying it by Log 







i
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DF
DF where i

UDF  is the percentage of documents in UniProt 

containing w i and i
PDF  is the percentage of documents in PubMed containing w i . This 

will have the effect of upweighting words that occur relatively more frequently in 

UniProt versus PubMed (and thus are more specific and relevant to it) and 

downweighting words that occur at the same or lower frequency (which are thus not 

specific or relevant to it). This thesis does not empirically explore this idea of a coarse-to-

fine classifier cascade or this different way of doing a pre-IDF step, but they are 

intriguing and are given as possible future directions to explore.
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Chapter 6 Related Work, Contributions, and Conclusions

6.1 Data Interoperation: LinkHub and YeastHub

While the contributions of this thesis specific to data interoperation are more 

subjective and possibly limited compared to the information retrieval aspects of the 

thesis, they are still noteworthy and this section will cover them. Section 3.3 gave an 

overview of the two main approaches to data interoperation, data warehousing and 

federation, and referred to some related, representative systems for biological data 

interoperation based on these two approaches. In fact, there is no need to rely solely on 

one of these two techniques and there are advantages and efficiencies to be gained by 

combining them. This thesis thus espouses a hybrid approach between these two 

extremes and LinkHub enables this: individual LinkHub instantiations (such as at 

hub.gersteinlab.org) are a kind of mini, local data warehouse of commonly grouped data,

and individual LinkHub instantiations can then be connected to larger major hubs such as 

UniProt (as is done with hub.gersteinlab.org) in a federated fashion; efficiency is gained 

by obviating the need for all the individual source datasets to be connected directly to 

each other or individually to the major hubs. As a practical by-product, LinkHub also 

allows the creation of a single point-of-entry to the many separate web resources within a 

lab or organization; the LinkHub web GUI interface presents a simple and intuitive way 

to navigate these many web resources (and their relationships through biological 

identifiers) and is essentially a “Links Portal” to them.

There is a need for standards and tools enabling the genomics and proteomics 

communities to harness their own collective efforts towards connecting their vast amount 
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of data in a loosely coupled collaborative manner, without requiring explicit coordination 

or centralization. The position of this thesis is that the semantic web is the logical basis 

for such standards, and LinkHub and YeastHub are such tools. Chapter 1 described how 

the semantic web allows what could be termed incremental data warehousing, allowing 

one to make partial, incremental progress in data interoperation without requiring the 

complete problem to be solved. The YeastHub and LinkHub systems described in this 

thesis were based on semantic web technologies in order to achieve such practical partial 

progress in biological data interoperation, the complete solution of which is impractical 

due to the large and changing size, and independent distribution, of biological data. The 

semantic web is still in an early stage and not so widespread, and YeastHub and LinkHub 

are noteworthy as early explorations and testbeds for biological data interoperation 

through the semantic web.

The YeastHub work identified important issues that would need to be addressed 

to enable interoperation of biological data, such as syntactic conversion to a common 

format, and built a practical system addressing many of them. The LinkHub system 

addressed an important remaining problem, the need to find, store, and work with 

identifiers and the relationships among them (i.e. ontology alignment or mapping of 

biological identifiers). This is a high-level, important structuring principle for biological 

knowledge, and LinkHub complemented YeastHub by providing such connections. 

Several example queries were given of the LinkHub and YeastHub RDF data to show 

that even the relatively basic data integration provided by these two systems could enable 

quite useful, interesting, and non-trivial exploratory data analysis with RDF query 

languages across many disparate datasets and roughly duplicate the results of some 



121

published works; this demonstrates the value of the semantic web for allowing practical, 

incremental progress towards integrated biological data analysis to be made.

An important future direction for LinkHub and YeastHub would be to explore how 

other relevant semantic web-related technologies could be effectively used with them, in 

particular named graphs [118] and Life Science IDentifier or LSID [119]. Named graphs 

allow RDF graphs to be named by URI, allowing them to be described by RDF statements; 

named graphs could be used to provide additional information (metadata) about identifier 

mappings, such as source, version, and quality information. LSID is a standard object 

naming and distributed lookup mechanism being promoted for use on the semantic web, 

with emphasis on life sciences applications. An LSID names and refers to one unchanging 

data object, and allows versioning to handle updates. The LSID lookup system is in 

essence like what Domain Name Service (DNS) does for converting named internet 

locations to IP numbers. While LinkHub does store some identifiers named as LSID’s (e.g. 

from the resource pseudogene.org) it would be interesting to explore more fully using 

LSID for naming objects in LinkHub and incorporating LSID lookup functionality. 

Finally, like software such as Napster and Gnutella did for online file sharing, one could

explore enhancing LinkHub to enable multiple distributed LinkHub instantiations to 

interact in peer-to-peer networks for dynamic biological data sharing, possibly using web 

services technologies such as Web Services Description Language or WSDL

(http://www.w3.org/TR/wsdl) and Universal Description, Discovery and Integration or 

UDDI (http://www.uddi.org/) for dynamic service discovery, and available peer-to-peer 

toolkits.

Two other recent related systems include Tabulator and BioGuide. Tabulator
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[120] is an attempt at a semantic web browser developed by Tim Berners Lee, the 

inventor of the web and head of W3C. It is early stage and has limitations, but it is similar 

to the LinkHub system in that it uses essentially the same basic interface, namely a 

dynamic expandable/collapsible list, in presenting an integrated view of RDF data 

fetched from multiple sites. Another related system BioGuide [121] uses RDF, but it is 

limited in that it focuses on abstract conceptual modeling of resources and their 

interconnections rather than on more practical instance data as in LinkHub and 

YeastHub; also its interface presents the data using Graph drawing software with Java, 

whereas LinkHub is more lightweight and relies only on the web browser with 

JavaScript. Finally, there have been a number of graph database systems and graph query 

languages developed through the years but they suffer from being proprietary and none 

have developed into widely used standard systems. However, it should be pointed out 

that some of these systems support advanced graph data mining and analysis operations 

not supported by RDF query languages and these features might be necessary for 

effective analysis of biological data represented in RDF [122]; nevertheless, the 

simplicity of RDF and its query languages are more conducive to widespread acceptance 

and use (and the relative complexity of the graph database systems might have been their 

downfall for this).

A key contribution of the data interoperation techniques described and employed 

in this thesis is simply that they enabled the concrete creation of the LinkHub system 

which served as the basic, background system supporting the novel information retrieval 

aspects of the thesis. LinkHub joins relational data with free text data by linking free text 

web documents to the identifier nodes in the LinkHub relational graph. The "path type" 
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interface to LinkHub allows one to flexibly retrieve useful subsets of these web 

documents based on querying the relational structure of the graph, enabling a general 

kind of combined relational and keyword-based access to documents that normal search 

engines do not provide. Finally, chapter 5 described how the LinkHub relational graph 

could be used for enhanced automated information retrieval of documents related to 

proteomics identifiers; the next section covers the related work, contributions, and 

conclusions of this very important aspect of the thesis.

6.2 Automated Information Retrieval

This section gives an overview of some important related work to the automated 

information retrieval aspects of this thesis (chapter 5) and highlights the contributions of 

the thesis in this area. First, information retrieval is generally considered to be a subarea 

of text mining [123, 124], with the other key area being information extraction. 

Information extraction differs from information retrieval in that it attempts to perform 

fine-grain analysis of individual documents, e.g. shallow or full parsing of text, or pattern 

matching, to break it up into different lexical types, named and typed entities, etc., to pull 

out as much concrete information from the text as possible. Its aims include summarizing 

text and extracting factual information and individual entities from text, which can then 

be assigned types and/or meaning and represented in some structured form such as 

relational tables or even RDF; various kinds of logical inference or other analysis can 

then be done on the extracted data. For example, a typical problem for an information 

extraction system would be to take news articles about committed crimes and to extract 

such information as the location of the crime, when it occurred, who was the victim, etc. 

For evaluation of information extraction systems, the Message Understanding Conference 
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(http://www-nlpir.nist.gov/related_projects/muc/index.html) was held throughout the 

1990s as a kind of competition among information extraction systems and a showcase of

progress in the field. In biomedical text mining research information extraction seems to 

be the more studied area. Biomedical information extraction systems attempt to extract

various kinds of structured information, such as gene and protein names and even entire 

biological networks or pathways (e.g. see [125]), from the biomedical literature. As 

described in section 5.3, information retrieval does not attempt to do such fine-grain 

analysis of text but considers it simply as a “bag of words”; the goal is to return relevant 

documents for a query, i.e. documents which would, if read, ideally satisfy the 

information requirements inherent in the query. Biomedical information retrieval is a 

very important problem and information retrieval systems to the biomedical literature are 

the most practical text mining tool generally used by researchers (e.g. NCBI’s PubMed 

search engine).The focus of this thesis is on methods for enhanced information retrieval 

of the scientific literature and the web and not on information extraction.

Information retrieval research has a long history and the pioneer in the field was 

Gerald Salton. He and his research group developed the basic ideas of information 

retrieval (which are covered in section 5.3) and built the first information retrieval system 

based on these ideas, called the SMART information retrieval system [126], during the 

1960s. Salton’s group also investigated relevance feedback [127] where the idea is to take 

the results that are initially returned from some query and to use information about 

whether or not those results are relevant to perform a new and ostensibly better query

(relevance feedback is in essence for information retrieval what PSI-BLAST [128] is to 

sequence database search). SMART was a pioneering system and worked well for its 
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time, but its success was partly based on the primitive computing technology available at 

the time and the limited amount of text available to search in digital form. In other words, 

the basic ideas of information retrieval work well for small document collections, which 

were all that were available computationally at the time, but they do not scale well to 

large document collections such as the World Wide Web. With the growth of the internet, 

there came a need to be able to search for information spread across it. Wide Area 

Information Servers or WAIS [129] was an early and noteworthy system for distributed 

searching of text, and it was often used as the full text search engine for internet Gopher 

servers; Gopher [130] is a distributed internet document search and retrieval network 

protocol whose goal was similar to the Web but has been almost completely displaced by 

the Web (kind of a proto-web or pre-web web).

The real, practical need for effective information retrieval of large document 

collections became apparent with the birth and growth of the World Wide Web around 

the mid 1990s. Early web search engines based on basic information retrieval ideas (or 

simpler) were painfully inadequate. The problem was that, given the enormous size of the 

web, there can be millions of web documents that score about the same for a given query 

of a small number of terms, and useful documents could be anywhere within these vast 

result sets; as discussed above, the most relevant documents must be among at most 

about the top 1000 documents or else they are effectively inaccessible to the user. It was 

the Google search engine’s solution [41] to this problem in the late 1990s that made it 

famous and still the most widely used and respected search engine today. The essence of 

Google is that it uses what could be construed as primitive semantics in the current web 

to greatly improve search results ranking, i.e. the hyperlinks (and associated link text) 
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that web page creators add to their pages. A web hyperlink is a “vote” for the importance 

of the web document being linked to, and the link text ideally is a short, succinct text 

snippet telling what the linked to page is about or why it is relevant given the linking 

page’s context. Intuitively Google ranks highest documents that have the most “votes”

and this proved to be effective (more specifically votes from more important pages are 

weighted higher, and Google’s famous PageRank algorithm iterates multiple times over 

the web’s hyperlink graph to solve for consistent scores for pages). Nevertheless, Google 

has a very simple interface and relies on users entering only a few key words to search 

for, and without Google’s effective ranking this could result in millions of potential 

matches which would be impossible for the user to sift through. Thus, techniques such as 

Google’s are necessary for coarse, topical queries where only a few search terms are 

entered.

An alternative approach to the problem of too many documents being returned is 

to try to increase the precision of the initial search, e.g. many terms instead of only a few, 

so that only a relatively small number of documents meeting the stricter query 

requirements are returned; this is the approach taken by this thesis. A problem with trying 

to increase the precision of the initial search is that it will generally require many more 

terms to be entered, and users likely will not have the desire or time to enter directly 

themselves a large amount of information for a query. A key idea of this thesis is that this 

problem can be solved by the semantic web, where the much greater information 

(compared to a few manually entered words) in the known semantic relationships among 

identifiers and the textual content of their associated documents can be used to greatly 

increase the precision of searches. In a vision of how the semantic web could aid search 
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of the standard web in the future, users would only need to point to nodes in the semantic 

web (there will have to be search access to the semantic web itself to aid in finding these) 

and then click “find more like this node” to specify and execute such high-precision 

searches and the ideas of this thesis could help enable this.

Other work has increased the precision of queries by considering entire 

documents to be queries, e.g. notably PubMed’s “Related Articles” links [131] to find 

other articles similar to a given article. This thesis extends this idea to using multiple, 

weighted documents combined (i.e. from the LinkHub relational subgraph), where some 

of the combined documents are only indirectly related to the query concept such as 

PFAM and GO pages to UniProt identifiers, and demonstrates empirically that this 

approach can improve information retrieval accuracy over just using single documents as 

queries. This thesis also demonstrates how the accuracy of such queries can be 

dramatically improved by the use of the pre-IDF step, which can be especially important 

when web pages are the source query documents since they tend to be less concise and 

contain more extraneous, non-informative terms than straight English text. Finally, the 

thesis makes a contribution simply by empirically quantifying how the useful, practical 

(but currently unmet) need of automatically retrieving related documents to proteomics 

identifiers can be achieved with high accuracy.

Other research has explored ways of using ontologies to aid information retrieval 

and some representative recent examples are as follows. [132] considers the problem of 

ontology grounding, or making mappings between concepts in formal ontologies and 

terms in text documents which are instances of those concepts, and how this problem can 

be solved automatically using machine learning support vector machine classifiers 
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(SVMs). They demonstrate how their technique can be used to assign free text questions 

on legal topics to appropriate subtopics in a taxonomy of legal topics. [133] follows a 

similar procedure, where they generate word weight vectors from text (which, 

interestingly, was originally spoken speech and translated to text; their application focus 

is what they call “mobile audio-based knowledge management”) but only consider and 

weight terms which are found to be concepts from a task-oriented ontology of common 

problems in computing (e.g. printer paper jam, UPS connection problem, etc.) LinkHub-

based information retrieval is more flexible and easily-deployed; it differentiates itself by 

focusing on lightweight relations among instance-level data, and does not require a large, 

complex background ontology (class-level data) be present for which it can be assumed 

all text documents considered will be related to this ontology (and where only terms 

which in fact are determined to be related to the ontology are considered).

Most recently is research showing the high performance of SVM classifiers

trained on gold standard, manually curated bibliographies for specialized information 

retrieval tasks [117] (hereafter referred to as Aphinyanaphongs et al 2006). This work 

notes the need for specialized filters for finding relevant documents in the huge and ever 

expanding scientific literature:

“The growth of publication volume in the majority of fields of biomedicine is 

rapidly becoming intractable. Modern approaches to biomedical information 

retrieval are seeking to alleviate the problem by developing specialized filters that 

find documents that satisfy special content or methodological criteria. Such filters 

have been developed, for example, to identify randomized controlled trials or to 
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select documents that focus on prognosis and satisfy rigorous criteria of statistical 

design and analysis, etc. This Focused Filter paradigm is implemented either via 

automated methods based on machine learning or on manual and semi-manual 

construction of search queries tailored to the criteria of interest.”

A prominent example of such manually constructed queries is the PubMed Clinical 

Queries (http://www.ncbi.nlm.nih.gov/entrez/query/static/clinical.shtml), which were 

painstakingly constructed to try to optimize sensitivity and specificity (for each query, 

there are separate versions which optimize sensitivity and specificity) for particular 

information retrieval tasks in clinical medicine. Such a manual approach does not scale

well, and in fact Aphinyanaphongs et al 2006 demonstrates that superior performance can 

be achieved automatically by machine learning SVM classifiers.

The basic difference between Aphinyanaphongs et al 2006 and the work in this 

thesis is that this thesis addresses information retrieval for proteomics identifiers while 

Aphinyanaphongs et al 2006 addresses information retrieval for specialized medical 

contexts. The key difference, however, is that this thesis demonstrates how specialized 

filters can be constructed automatically and easily, through a kind of symbiosis with the 

semantic web, at very large scale (i.e. for the millions of proteomics identifiers present in 

the LinkHub relational graph) using only a relatively small amount of information (i.e. 

the small number of web pages linked to relational subgraphs’ identifier nodes versus a 

relatively large number of documents in manually created medical bibliographies) and 

relatively simple and computationally efficient methods (pre-IDF plus combined word 

weight vectors, which to create will have linear time complexity in the number of terms / 
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words, versus SVMs which are more computationally intensive and require the solution 

of quadratic programming optimization problems) while still achieving high 

performance. Nevertheless, the Aphinyanaphongs et al 2006 work is consistent with and 

supports the general approach taken in this thesis of creating specialized filters (in the 

form of word weight vectors) for retrieval of documents specific to particular proteomics 

identifiers, and demonstrates its effectiveness.

Another noteworthy result of the Aphinyanaphongs et al 2006 work is its 

evaluation of relevance metrics based on citations, such as citation count, journal impact 

factor, and Google’s PageRank algorithm. As noted above, Google’s great success was 

due in large part, at least initially, to its PageRank algorithm which provided an effective 

solution to the problem of relevance ranking of huge result sets. It would thus seem 

reasonable to expect that algorithms based on citation information such as PageRank 

would also prove very effective for information retrieval of the scientific literature, but 

the Aphinyanaphongs et al 2006 work finds this to not be the case. They conclude:

“These experiments provide evidence that when building information retrieval

filters focused on a retrieval task and corresponding gold standard, the filter 

models have to be built specifically for this task and gold standard. Under those 

conditions, machine learning filters outperform standard citation metrics. 

Furthermore, citation counts and impact factors add marginal value to 

discriminatory performance [when used as additional features by the machine 

learning classifiers]” (italicized text added for clarification).
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In fact, the Aphinyanaphongs et al 2006 work did not directly compare to PageRank, but 

they cite a previous study [134] that showed citation count superior to PageRank, and 

since their study directly showed machine learning classifiers to outperform citation 

count they conclude by transitivity that machine learning classifiers are very likely 

superior to PageRank.

Given Google’s great success with PageRank for ranking web documents, this 

result might seem counterintuitive. Aphinyanaphongs et al 2006 provides some intuition:

“An article may cite another article for a variety of reasons: to acknowledge prior 

work, identify methodology, provide background reading, correct or criticize, 

substantiate claims, alert readers to forthcoming work, authenticate data, identify 

original publication of a term or concept, disclaim work of others, or dispute 

priority claims. In addition, the citing paper may be a comprehensive review that 

attempts to cite most recent papers on the topic, the reviewers may have 

recommended that a citation needs be included, the cited article may be a highly 

controversial or fashionable one, etc. An article citation thus may or may not 

endorse a cited article. The lack of an unambiguous connection between citation, 

context of use, manner of use, and/or endorsement prevents citation count from 

being a single effective measure of inclusion in an “importance” bibliography. 

More generally stated, the conceivable reasons for citation are so numerous that it 

is unrealistic to believe that citation conveys just one semantic interpretation. 

Instead citation metrics are a superimposition of a vast array of semantically 

distinct reasons to acknowledge an existing article. It follows that any specific set 
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of criteria cannot be captured by a few general citation metrics and only focused 

filtering mechanisms, if attainable, would be able to identify articles satisfying the

specific criteria in question.

Another limitation of citation metrics is that they assume that the frequency of 

citations is uniform across all topics. This assumption is clearly not true across all 

topics in biomedicine. For example, the total number of citations using the query 

“breast cancer” in Pubmed returns 141,704 citations whereas the query 

“osteosarcomas” returns 15,904 articles (executed on 11/15/2005). Thus even the 

highest ranking article in osteosarcomas by citation count may not rank 

comparably to articles at lower ranks within breast cancer.

We also note that citation metrics are not only limited by their lack of focus, but, 

in general, they are not available until several years have passed. This reduces the 

usefulness of citation-based metrics for assessing cutting-edge articles. Since 

predicting future citation count is an open and unsolved problem in pattern 

recognition so far [note: this work attempted such prediction unsuccessfully], it 

follows that citation metrics are not only highly non-specific but also unavailable 

when needed the most (i.e., for articles published in recent years).”

In spite of this result, citation information still seems intuitively likely to be an 

important, useful source of information for relevance ranking. An important part of 

PageRank is that the link text is used as a concise snippet summary of the linked to page, 
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and citations in scientific papers generally do not provide such link text (or make it easily 

apparent what it would be); this is important, because the link text is propagated as highly 

weighted text to the linked to page, and this thus wouldn’t be available in uses of 

PageRank on scientific literature. Also, at the extremes citation metrics would seem to be 

highly predictive of relevance, e.g. an article not cited at all (or very few times) is very 

likely less relevant than one cited a large number of times; thus, citation information 

might work better at a coarse-grained level or in discretized form. The observation that 

there is a large time-lag until citation information is available is valid, however possibly 

this could be taken advantage of: the temporal information about when and at what rate 

citations become available for an article might be useful for predicting relevance. In other 

words, for articles with the same number of citations, the temporal patterns of when those 

citations were received might be predictive (e.g. maybe an article that receives a flurry of 

citations in a short period in a hot area would be more relevant than one that received its 

citations at a steady rate). Next, consider that citations are just one way that documents 

can be linked together into a large graph. PubNet [135] allows one to do PubMed queries 

and view the results as a network, where the returned citations can be specified to be 

linked by co-authorship, common MeSH terms, shared location, or databank identifiers 

(PDB, GenBank, SwissProt). In the same way, one could run PageRank or consider other 

link-based metrics on such differently constructed literature networks; for example, 

PageRank on a co-authorship graph seems likely to be effective for predicting relevance 

(i.e. who we associate and work with influences the quality of our work). Finally, note 

that the issue about the opacity of semantic interpretations of citations is something that 

the semantic web could directly address. Given that the constructs for specifying links in 
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the semantic web are much richer and unambiguous, application of PageRank or other 

citation metrics to relevance ranking in the current web or scientific literature enhanced 

with semantic web links or citations (expressed in RDF or OWL format) would not 

encounter the problem of ambiguous semantic interpretation of links. Thus, while the 

results of Aphinyanaphongs et al 2006 regarding citation metrics are intriguing, it seems 

there is still room for fruitful explorations about how citation and linking information 

among documents could be used for improved relevance ranking.
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Appendix 1 Proteomics Overview, Proteomics 

Databases, and Representative Problems in 

Computational Proteomics

A1.1 Overview of Proteomics and Related Areas; or a (very) 

Crash Course in Modern Biology

Genomics can be defined as the science of sequencing or spelling out each letter of the 

DNA molecule in an organism’s genome, and identifying its genes 

(http://www.med.umich.edu/genetics/glossary/#g). The Human Genome Project [136] is 

likely the most well known large-scale biological research project within the last two

decades to the general public. It was a large, US government funded scientific initiative 

coordinated by the National Institutes of Health and the Dept. of Energy involving many 

different researchers and labs whose aim was to determine the complete DNA base 

sequence of the human genome, which consists of 23 chromosome pairs and about 3 

billion DNA bases in total, and to identify all the genes within it. The initial draft of the 

human genome was released and published in the journals Nature [137] and Science 

[138] in Feb 2001 (the Science paper actually described the sequence as determined by a 

private, competing project run by the company Celera Genomics, although it used data 

from the publicly funded project), and subsequent work has been ongoing to improve the 

accuracy of the human genome sequence. The human genome project has been covered 

in the mainstream news often and there is a popular belief that the human genome project 

was somehow the end-point and culmination of biological knowledge about humans. In 
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fact, while it is clearly a monumental achievement, it is really only the beginning of 

unraveling the complete biological workings of human beings (and similarly for other 

organisms whose genomes have been sequenced).

Molecular biology is the study of the structure and function of biological 

molecules, and the so-called central dogma of molecular biology was first enunciated 

by Francis Crick in 1958 and later restated more formally in a 1970 Nature paper [139]. It 

describes the basic flow of information in cells: DNA  RNA  protein. In other words, 

DNA makes RNA which makes proteins, which in turn facilitate the previous two steps 

as well as the replication of DNA. Research in the years since the central dogma was first 

put forth has complicated this simple picture, for example recent discoveries point to a 

much more complex and active role for RNA and splicing and post-translational 

modifications greatly increase the variety of protein products. Nevertheless, the central 

dogma is still essentially correct and provides the basic framework for understanding how 

cells work. The important point is that DNA is just the static, information encoding 

template for the dynamic operation of cells. For the most part, DNA is not an active 

molecule that actually carries out the necessary life supporting function of cells, such as 

moving molecules between subcellular compartments, catalyzing the reactions which 

create, store, and use energy, etc.; it is the proteins (and also somewhat RNA) which are 

the prime active agents of cell operation, and just knowing the genome sequence and 

genes does not help you much towards elucidating the dynamics of cells. Thus, to more 

fully understand how cells work we need to study the prime active agents, the proteins, 

and this is what proteomics does.

A good, concise definition of proteomics is as follows 
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(http://en.wikipedia.org/wiki/Proteomics):

Proteomics is the large-scale study of proteins, particularly their 

structures and functions. This term was coined to make an analogy with 

genomics, and while it is often viewed as the "next step", proteomics is much 

more complicated than genomics. Most importantly, while the genome is a rather 

constant entity, the proteome differs from cell to cell and is constantly changing 

through its biochemical interactions with the genome and the environment. One 

organism has radically different protein expression in different parts of its body, 

in different stages of its life cycle and in different environmental conditions.

The entirety of proteins in existence in an organism throughout its life cycle, or on 

a smaller scale the entirety of proteins found in a particular cell type under a 

particular type of stimulation, are referred to as the proteome of the organism or 

cell type respectively.

Proteomics is a key component of systems biology, whose goal is a holistic, systems-

level understanding of biological systems that takes into account complex interactions of 

gene, protein, and cell elements (www.genpromag.com/Glossary~LETTER~S.html). 

Proteomics and systems biology, because they are trying to achieve a global 

understanding of the interactions among a huge number of interacting elements (genes, 

proteins, etc.), of necessity rely heavily on computational analysis using techniques from 

bioinformatics. Bioinformatics deals with the collection, organization and analysis of 

large amounts of biological data using networks of computers, databases and techniques 

from computer science, mathematics, and statistics
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(http://www.abc.net.au/science/slab/genome2001/glossary.htm). Much data used in 

bioinformatics is the result of large-scale, high-throughput experiments which obtain 

large amounts of aggregate data about cell dynamics and function. For example, one 

commonly used type of such large-scale high-throughput data is gene expression data 

gotten from a DNA microarray, which is a collection of microscopic DNA spots 

attached to a solid surface, such as glass, plastic or silicon chip forming an array for the 

purpose of expression profiling, i.e. monitoring expression levels for thousands of genes 

simultaneously (http://en.wikipedia.org/wiki/DNA_microarray). Other commonly used 

high-throughput experimental techniques used in proteomics include gel electrophoresis

(to separate a mixture of proteins and determine their relative masses and isoelectric 

points), X-ray crystallography and nuclear magnetic resonance (different 

experimental methods for determining the three dimensional structures of proteins), mass 

spectrometry (to find the composition of an unknown physical sample), and Two-

hybrid screening (for experimentally determining potential protein-protein interactions), 

among others. Such high-throughput experimental techniques are generating a vast 

amount of biological data, most of which is publicly available.

A1.2 Proteomics Related Databases

In addition to data from large-scale, high-throughput experiments a number of other 

kinds of protein data and information are collected in various web-accessible (and also 

often downloadable) databases. The following are some of the important large and well-

known sources of proteomics data (almost all of these are present in LinkHub):
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 UniProt (http://www.uniprot.org). UniProt is the universal protein database, a 

central repository of protein data that is the world's most comprehensive resource 

on protein information. It contains entries for most known proteins, and each 

entry has information such as originating gene names, source organism of the 

protein, literature citations relating to the protein, comments giving functional 

information and subcellular localization information (if known), the protein 

sequence and associated biochemical information, and, importantly, a large 

number of cross-references to other biological databases (in particular, almost all 

the others described next). UniProt, in fact, serves as core backbone content for 

the LinkHub system described in this thesis.

 Pfam (http://pfam.wustl.edu/). Protein families or domains are an important 

structuring principle for proteins; they are common sub-modules of protein 

sequences which are shared (in slightly modified form, but usually preserving 

some basic function) across many proteins in many organisms based on common 

evolution. Pfam is a main database for such protein families, and the Pfam 

website describes the Pfam database as follows: “Pfam is a database of multiple 

alignments of protein domains or conserved protein regions. The alignments 

represent some evolutionary conserved structure which has implications for the 

protein's function. Profile hidden Markov models (profile HMMs) built from the 

Pfam alignments can be very useful for automatically recognizing that a new 

protein belongs to an existing protein family, even if the homology is weak.” 

Pfam is another important piece of backbone content in the LinkHub system.
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 Gene Ontology or “GO” (http://www.geneontology.org). GO is a standardized 

vocabulary in the form of a directed acyclic graph of terms (in order of more 

general to more specific) for describing 3 important properties of gene and protein 

function: the molecular function of gene products, their role in multi-step 

biological processes, and their localization to cellular components. GO is the 

most widely used standard for annotating gene and protein function, and many 

protein databases use GO terms to describe the functions of proteins (e.g. UniProt 

cross-references to GO terms in its protein entries).

 Protein Data Bank  or “PDB” (http://www.pdb.org). The PDB is a repository for 

3-D structural data of proteins and nucleic acids. This data, typically obtained by 

X-ray crystallography or NMR spectroscopy, is submitted by biologists and 

biochemists from around the world, is released into the public domain, and can be 

accessed for free. The database is the central repository for biological structural 

data (http://en.wikipedia.org/wiki/Protein_Data_Bank).

 Structural Genomics Target Tracking Databases: TargetDB and PepcDB

(http://targetdb.pdb.org and http://pepcdb.pdb.org/). Protein 3-D structure is 

highly conserved through evolution, i.e. evolutionarily related proteins in distant 

species with mostly divergent sequences nevertheless often share very similar 3-D 

structures, and family members with even only a small amount of sequence 

similarity to another protein family member of known structure (down to around 

20%) will have structures very close to that known protein’s structure (and a 

technique called homology modeling is used to model them). Protein structure is 

the key indicator of protein function, so knowing the 3-D structures of proteins is 
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important. Predicting protein 3-D structure from only protein sequence data is

currently intractable (and is a large open problem) so experimental techniques 

must be used. Structural Genomics is another government funded program 

involving a number of labs throughout the United States and also internationally. 

The main goal is to solve representative 3-D structures of all known protein 

families in a high-throughput, efficient manner. Protein targets of structural 

genomics go through an experimental pipeline of a number of stages en route to 

structure determination, and the target tracking databases provide status 

information (e.g. where in the pipeline a protein is, dates when it reached stages, 

etc.) on all targets; the endpoint of the pipeline is deposition of the protein’s 3-D 

coordinates in the PDB. These target tracking databases are used to inform the 

public about structural genomics progress, as the basis of data mining and 

statistical analysis (an example is described below), and, importantly, to avoid 

wasting effort and resources on redundantly solving multiple structures from the 

same family when only one is necessary.

 MolMovDB (http://www.molmovdb.org). MolMovDB is the database of 

macromolecular motions. While the PDB contains protein 3-D structures, they are 

static structures. Proteins and other molecules in the cell are in fact flexible and 

have motions which are important for carrying out their functions. Molecular 

dynamics simulation based on a known structure is one technique that can explore 

likely motions of molecules, but it is very computationally intensive. MolMovDB 

takes proteins for which more than one structure is available, in different 

conformations, and calculates the most likely (least energy) trajectory between the 
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different structures; this motion will likely be close to the motion the protein 

actually takes in the cell.

 Species specific databases: SGD (yeast), RGD (rat), MGD (mouse), 

WormBase (nematode worm). These are databases that provide much detailed 

information and data, including but not limited to proteomics, but are specific to 

important model organisms such as SGD for yeast (Saccharomyces cerevisia) at 

http://www.yeastgenome.org, RGD for the rat (Rattus norvegicus) at 

http://rgd.mcw.edu/, MGD for the mouse (Mus musculus) at 

http://www.informatics.jax.org, and WormBase for the worm (Caenorhabditis 

elegans) at http://www.wormbase.org/.

A1.3 Important Computational Problems in Proteomics

The above databases and results from large-scale, high-throughput experiments can be 

used to aid in solving important computational problems in proteomics, and this section 

gives an overview of some of these problems. A common theme for many of these 

problems is to use known, experimentally determined attributes of certain proteins to 

predict  these attributes and other, related attributes in other proteins using machine 

learning and statistics. One fundamental concept and technique in bioinformatics used to 

aid in solving these problems is sequence alignment which can be defined as:

“A sequence alignment in bioinformatics is a way of arranging DNA, RNA, or 

protein primary sequences to emphasize their regions of similarity, which may 

indicate functional or evolutionary relationships between the genes or proteins in 

the query. Sequences are typically written with their characters (generally amino 
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acids or nucleotides) in aligned columns into which gaps are inserted so that 

successive columns contain identical or similar characters.” 

(http://en.wikipedia.org/wiki/Sequence_alignment).

Figure A1 is an example of a sequence alignment between two proteins (two zinc 

finger proteins which are highly related and this is shown by the many matching columns 

in the alignment). Sequence alignment is not limited to just considering exact column 

matches, but also considers the chemical similarity of nucleotides or amino acids. For 

example, an alignment column with two non-equal but chemically similar amino acids 

signals more similarity between the sequences than two chemically distinct aligned 

amino acids. There exist scoring matrices which give numerical scores to different 

aligned nucleotides or amino acids, and an entire sequence alignment can be scored by 

summing up the scores (as given by the scoring matrix) of all alignment columns. 

Optimal sequence alignment can be performed using algorithms based on dynamic 

programming, but they are computationally intensive [140, 141].

Fig. A1. A sequence alignment, produced by the sequence alignment program ClustalW, 
between two human zinc finger proteins identified by GenBank accession number. Figure 
obtained from http://en.wikipedia.org/wiki/Sequence_alignment.

An important application of sequence alignment is to use it to perform sequence 

database search, i.e. determine the sequences in a large sequence database that most 
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closely match a given query sequence and order them in decreasing order of similarity. 

Two widely used heuristic tools for doing this almost as good as dynamic programming 

based algorithms but much more efficiently are BLAST (Basic Local Alignment Search 

Tool) [142] and FASTA [143]. BLAST and FASTA essentially support a simple “nearest 

neighbor” approach to many bioinformatics problems. In particular, if you want to 

determine some attribute X which you don’t know for a new protein, one simple thing 

you can do which often works well is to determine the new protein’s closest, most related

sequences in a sequence database by performing a Blast or Fasta search of that sequence 

database; you can then assign the value of attribute X of the top match (or majority vote 

of the top matches). Note that this assumes there exist in the sequence database similar 

enough sequences which have known values for attribute X. A similar but more refined 

technique is to construct a phylogenetic tree (which is a tree reflecting, ideally, the likely 

evolutionary history and divergences among a set of homologous, meaning 

evolutionarily related, sequences) and use the structure of the tree and where the query 

sequence falls within it to determine the value of the attribute X for the query sequence 

(i.e. the values for other sequences in small subtrees that also contain the query sequence 

are better predictors). Finally, some important generally accepted observations relating 

protein structure, function, and sequence are: (1) similar structure implies similar 

function but not necessarily detectable similarity in sequence, (2) similar sequence 

implies similar structure, which in turn thus implies similar function. In general, 

homologous proteins can have very divergent sequences and still have similar structures. 

Thus, the homology of two proteins could be undetectable by sequence alignment 

methods while the structures are still very similar. This is one of the reasons structural 
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genomics is important --- it extends the reach of such “nearest neighbor” methods since 

what are separate families at the sequence level can be combined into larger, combined 

structural families if their structures are determined to be homologous. Thus, e.g., 

attributes which were unknown in one of the families can possibly be inferred from the 

values of the attributes in the other family if known. 

With this overview of some basic techniques used to solve computational 

problems in biology, some of the important computational problems in proteomics are:

 Protein Function Prediction. Given a protein of unknown function, 

predict what its function is. This can be done using the “nearest neighbor” 

sequence database search technique --- assign the functions of the nearest 

neighbors to the query sequence. Terms from the Gene Ontology, because 

it is a standard and has been widely accepted and used, are generally the 

terms used to annotate function.

 Protein subcellular localization prediction. Most eukaryotic proteins 

are encoded in the nucleus and synthesized in the cytosol, and are then 

transported to various subcellular compartments (golgi-apparatus, 

endoplasmic-reticulum, cell membrane, etc.) to do their work (where they 

may interact with other proteins in the same compartment). So the 

problem is to predict where in the cell a protein is localized. This is 

practically useful for determining which proteins might interact, and for 

drug targeting (so you can try to target your drug to proteins in a more 

easily accessible location in the cell, such as secreted proteins and plasma 
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membrane proteins which are in the extracellular space and cell 

membrane respectively). Again, nearest neighbor database search 

techniques can be used, but proteins also often have small sequence 

patterns within them that serve as sorting and localization signals to the 

cellular apparatus responsible for transporting proteins, and these can be 

searched for in novel proteins to help predict their subcellular 

localizations.

 Protein structure prediction. In fact, there are 2 important levels of 

structure: secondary structure refers to common local structural motifs 

that occur in all proteins, with the two main ones being alpha helices and 

beta sheets, whereas tertiary structure refers to the overall, global 3-D 

structure of a protein. Computational methods are generally very good at 

predicting secondary structure, up to about 90% overall prediction 

accuracy. Machine learning based on statistics about the propensities of 

amino acids to be in different types of secondary structure motifs, hidden 

markov models trained from known secondary structure of proteins, along 

with information about homologs’ known secondary structure in 

corresponding positions in multiple sequence alignments of homologs 

(determined from sequence database searches) and the query sequence are 

all used to solve the secondary structure prediction problem very well. 

Tertiary structure prediction, on the other hand, is very difficult (currently 

intractable) and is one of the important open problems of computational 

biology that is actively being researched. The most practical method, 
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which does work reasonably well, is homology modeling as described 

briefly above --- if you know the structure of a protein that is similar in 

sequence to a query protein (i.e., in the same family as described above) 

you can model the structure of the query protein based on the known 

structure of the sequence similar protein; unfortunately, this method has 

limited applicability because relatively few structures are currently known 

compared to the number of known protein sequences. Ab initio protein 

structure prediction attempts to predict 3-D structure “from scratch” and 

generally involves some kind of heuristic search for the lowest energy 

conformation of a protein; current ab initio techniques generally do not 

work well.

 Protein-protein interaction prediction. The cell is complex, with a large 

number of different kinds of molecules, including many different 

proteins, packed tightly in very close proximity. Most proteins do not 

work in isolation but interact with other proteins to perform their 

functions, for example interactions are important in understanding intra-

cellular signaling networks; predicting protein-protein interactions is thus 

an important computational problem. Interactions between pairs of 

proteins can be inferred experimentally using such high-throughput 

techniques as two-hybrid systems, affinity purification / mass 

spectrometry assays, or from protein microarrays, however these 

experimental techniques produce noisy results with many false positives. 

Computational methods thus play a key role in trying to refine the 
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experimental predictions to eliminate false positives. Bayesian 

integration, which combines different kinds of indirect evidence for 

interaction such as phylogenetic profiling (interacting proteins tend to co-

evolve and measures of phylogenetic distance thus can provide some 

evidence for interaction), known interacting homologues in other species 

(“interologs”), and the presence of structural interaction motifs, is 

commonly used for this refinement process.

 Protein interaction network analysis. Once you are able to accurately 

uncover large numbers of  protein-protein interactions from experimental 

and computational techniques, you can form a large interaction network 

out of all of them (where nodes are proteins and edges signify that the two 

nodes connected by the edge interact). You can then perform network 

analysis of the interaction network to learn more about overall cellular 

function --- interaction network analysis is an important step towards a 

systems biology understanding of the cell. For example, you can look for 

hubs (nodes with large degree) --- these will presumably be very 

important (so called “essential”) proteins (since they interact with so 

many others) which would cause organism death upon removal (e.g. in a 

gene knockout experiment). In addition, cliques in the network will likely 

represent protein complexes.
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Appendix 2 RDF Schema of LinkHub RDF Structure

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="identifier_types">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Identifier types</rdfs:label>

</rdfs:Class>
<rdf:Property rdf:ID="identifier_types_type_name">

<rdfs:domain rdf:resource="#identifier_types" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>
<rdfs:Class rdf:ID="identifiers">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Identifiers</rdfs:label>

</rdfs:Class>
<rdf:Property rdf:ID="identifiers_type">

<rdfs:domain rdf:resource="#identifiers" />
<rdfs:range rdf:resource="#identifier_types" />

</rdf:Property>
<rdf:Property rdf:ID="identifiers_id">

<rdfs:domain rdf:resource="#identifiers" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>
<rdf:Property rdf:ID="mappings_type_synonym">

<rdfs:domain rdf:resource="#identifiers" />
<rdfs:range rdf:resource="#identifiers" />

</rdf:Property>
<rdf:Property rdf:ID="mappings_type_Family_Mapping">

<rdfs:domain rdf:resource="#identifiers" />
<rdfs:range rdf:resource="#identifiers" />

</rdf:Property>
<rdfs:Class rdf:ID="resource">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Resource</rdfs:label>

</rdfs:Class>
<rdf:Property rdf:ID="resource_name">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>
<rdf:Property rdf:ID="resource_description">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
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</rdf:Property>
<rdf:Property rdf:ID="resource_url_template">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>
<rdfs:Class rdf:ID="resource_groups">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Resource groups</rdfs:label>

</rdfs:Class>
<rdf:Property rdf:ID="resource_group">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="#resource_groups" />

</rdf:Property>
<rdfs:Class rdf:ID="resource_accepts">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Resource accepts</rdfs:label>

</rdfs:Class>
<rdf:Property rdf:ID="resource_accept">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="#resource_accepts" />

</rdf:Property>
<rdf:Property rdf:ID="resource_accepts_id_acc_type">

<rdfs:domain rdf:resource="#resource_accepts" />
<rdfs:range rdf:resource="#identifier_types" />

</rdf:Property>
<rdf:Property rdf:ID="resource_accepts_except_type">

<rdfs:domain rdf:resource="#resource_accepts" />
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>
<rdf:Property rdf:ID="link_exception">

<rdfs:domain rdf:resource="#resource" />
<rdfs:range rdf:resource="#identifiers" />

</rdf:Property>
</rdf:RDF>
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Appendix 3 Full SeRQL statements for example joined 

YeastHub / LinkHub queries of chapter 4.

Query 1: Finding Worm ‘Interologs’ of Yeast Protein Interactions

SELECT DISTINCT YeastProtein1, YeastProtein2, WormProtein1, 
WormProtein2
FROM
{ppi}      it:Protein1                     {YeastProtein1},
{lhYO1}    lh:identifiers_id               {YeastProtein1},
{lhYO1}    lh:identifiers_type             {lhYOType},
{lhYO1}    lh:mappings_type_synonym        {lhUP1a},
{lhUP1a}   lh:identifiers_type             {lhUPType},
{lhUP1a}   lh:mappings_type_Family_Mapping {lhPFAM1},
{lhPFAM1}  lh:identifiers_type             {lhPFType},
{lhPFAM1}  lh:mappings_type_Family_Mapping {lhUP1b},
{lhUP1b}   lh:identifiers_type             {lhUPType},
{lhUP1b}   lh:mappings_type_synonym        {lhWO1},
{lhWO1}    lh:identifiers_type             {lhWOType},
{lhWO1}    lh:identifiers_id               {WormProtein1},
{ppi}      it:Protein2                     {YeastProtein2},
{lhYO2}    lh:identifiers_id               {YeastProtein2},
{lhYO2}    lh:identifiers_type             {lhYOType},
{lhYO2}    lh:mappings_type_synonym        {lhUP2a},
{lhUP2a}   lh:identifiers_type             {lhUPType},
{lhUP2a}   lh:mappings_type_Family_Mapping {lhPFAM2},
{lhPFAM2}  lh:identifiers_type             {lhPFType},
{lhPFAM2}  lh:mappings_type_Family_Mapping {lhUP2b},
{lhUP2b}   lh:identifiers_type             {lhUPType},
{lhUP2b}   lh:mappings_type_synonym        {lhWO2},
{lhWO2}    lh:identifiers_type             {lhWOType},
{lhWO2}    lh:identifiers_id               {WormProtein2},
{lhYOType} lh:identifier_types_type_name   {YEAST_ORF},
{lhUPType} lh:identifier_types_type_name   {UNIPROT_KB_ACC},
{lhPFType} lh:identifier_types_type_name   {PFAM_ACC},
{lhWOType} lh:identifier_types_type_name   {WORMBASE}
WHERE
YeastProtein1   = "YAL005C" AND
YeastProtein2   = "YLR310C" AND
YEAST_ORF       = "YEAST_ORF" AND
(UNIPROT_KB_ACC = "UniProtKB/Swiss-Prot Acc" OR
 UNIPROT_KB_ACC = "UniProtKB/TrEMBL Acc") AND
PFAM_ACC        = "PFAM_ACC" AND
WORMBASE        = "WORMBASE"
USING NAMESPACE
it=<http://yeasthub2.gersteinlab.org/yeasthub/schema/the_platinum_stand
ard_for_ppi20060224234451_schema.rdf>,
lh=<http://yeasthub2.gersteinlab.org/yeasthub/datasets/manual_upload/li
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nkhub_schema.rdf#>

Query 2: Exploring Pseudogene Content versus Gene Essentiality in Yeast and 

Humans

Yeast

SELECT DISTINCT YeastORF, Pseudogene
FROM
{gene}     mips:ORF                      {YeastORF},
{lhYO}     lh:identifiers_id             {YeastORF},
{lhYO}     lh:identifiers_type           {lhYOType},
{lhYOType} lh:identifier_types_type_name {YEAST_ORF},
{lhYO}     lh:mappings_type_synonym      {lhUP},
{lhUP}     lh:identifiers_type           {lhUPType},
{lhUPType} lh:identifier_types_type_name {UNIPROT_KB_ACC},
{lhUP}     lh:mappings_type_synonym      {lhPG},
{lhPG}     lh:identifiers_id             {Pseudogene},
{lhPG}     lh:identifiers_type           {lhPGType},
{lhPGType} lh:identifier_types_type_name {YEAST_PGENE}
WHERE
YEAST_ORF       = "YEAST_ORF" AND
(UNIPROT_KB_ACC = "UniProtKB/Swiss-Prot Acc" OR
 UNIPROT_KB_ACC = "UniProtKB/TrEMBL Acc") AND
YEAST_PGENE     = "YEAST_PGENE"
USING NAMESPACE
mips=<http://yeasthub2.gersteinlab.org/yeasthub/schema/mips_lethal_gene
s20050608191535_schema.rdf>,
lh=<http://yeasthub2.gersteinlab.org/yeasthub/datasets/manual_upload/li
nkhub_schema.rdf#>

Humans

SELECT DISTINCT YeastORF, HumanGene, Pseudogene
FROM
{gene}       mips:ORF                        {YeastORF},
{lhYO}       lh:identifiers_id               {YeastORF},
{lhYO}       lh:identifiers_type             {lhYOType},
{lhYOType}   lh:identifier_types_type_name   {YEAST_ORF},
{lhYO}       lh:mappings_type_synonym        {lhUP1},
{lhUP1}      lh:identifiers_type             {lhUPType},
{lhUPType}   lh:identifier_types_type_name   {UNIPROT_KB_ACC},
{lhUP1}      lh:mappings_type_Family_Mapping {lhPFAM},
{lhPFAM}     lh:identifiers_type             {lhPFAMType},
{lhPFAMType} lh:identifier_types_type_name   {PFAM_ACC},
{lhPFAM}     lh:mappings_type_Family_Mapping {lhUP2},
{lhUP2}      lh:identifiers_type             {lhUPType},
{lhUP2}      lh:mappings_type_synonym        {lhUPI2},
{lhUPI2}     lh:identifiers_type             {lhUPIType},
{lhUPIType}  lh:identifier_types_type_name   {UNIPROT_KB_ID},
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{lhUPI2}     lh:identifiers_id               {HumanGene},
{lhUP2}      lh:mappings_type_synonym        {lhPG},
{lhPG}       lh:identifiers_id               {Pseudogene},
{lhPG}       lh:identifiers_type             {lhPGType},
{lhPGType}   lh:identifier_types_type_name   {PGENE_LSID}
WHERE
YEAST_ORF       = "YEAST_ORF" AND
(UNIPROT_KB_ACC = "UniProtKB/Swiss-Prot Acc" OR
 UNIPROT_KB_ACC = "UniProtKB/TrEMBL Acc") AND
PFAM_ACC        = "PFAM_ACC" AND
(UNIPROT_KB_ID  = "UniProtKB/Swiss-Prot Id" OR
 UNIPROT_KB_ID  = "UniProtKB/TrEMBL Id") AND
HumanGene LIKE "*_HUMAN" AND
PGENE_LSID      = "PGENE_LSID"
USING NAMESPACE
mips=<http://yeasthub2.gersteinlab.org/yeasthub/schema/mips_lethal_gene
s20050608191535_schema.rdf>,
lh=<http://yeasthub2.gersteinlab.org/yeasthub/datasets/manual_upload/li
nkhub_schema.rdf#>
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Appendix 4 Results of PubMed search for UniProt 

P26364

Base searches (in stemmed form) pulling in the most relevant PubMed citations on 

average and the top 20 overall results for a search of PubMed for citations relevant 

to UniProt P26364, which is a yeast adenylate kinase protein located in the 

mitochondrion, using the procedure described in section 5.4. The abstract, article 

title, chemical substances, and mesh headings sections were searched by the base 

searches with Swish-e.

------Searches pulling in most relevant documents------
------sorted by avg normalized relevance score---------
map 0.154435058145367
kinase-encoding0.151404184861974
cerevisia 0.144666758112637
saccharomyc 0.144648868257687
activ 0.136552545139489
treu 0.136447542238716
kinas 0.134769703960043
pak 0.134308190670839
drosophila 0.132469983327981
et 0.126286215243481
annot 0.123239734650015
align 0.122659618072846
blastp 0.120825688941596
fasta 0.120612893193172
sequenc 0.118222123395145
domain 0.116745685521193
ncbi 0.116200439267413
motif 0.115793435831974
zinc-finger 0.113569963802525
famili 0.113250448501724
thaliana 0.111608246730794
protein 0.111601173336311
homolog 0.106563175722906
integr 0.105720626409793
melanogast 0.105625362704043
embl 0.105574546312823
respons 0.103101451293047
adk 0.10250808652045
mitochondri 0.10248265587763
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brucei 0.102000406074174
genom 0.101806710802482
chromosom 0.101684177283082
bind 0.100714396525705
trypanosoma 0.100688068343041
genomic_dna 0.0988185817626534
schricker 0.0986706020168536
nucleotide-binding 0.0983984054921733
bacillu 0.09784546039425
structur 0.0961442185091403
region 0.0950146751626199
gtp 0.0917005276028915
ak 0.0909596175236286
restrict 0.0899755269403705
orf 0.0892193828521216
mammalian 0.0886708095322505
dna 0.0872712064718214
site 0.0851759887816613
phosphotransferas 0.0845221245578372
put 0.0841266830399347
adenyl 0.0821743515306913
basic 0.0820972500925573
tair 0.0813874650221222
express 0.080391991882234
mip 0.0800093007602122
associ 0.079499582106676
databas 0.079046151064703
gene 0.0765910373094701
translat 0.0760619751305515
sativa 0.076002682419131
yeast 0.0759914230540377
catalyt 0.0744015050479549
mai 0.0735939329034745
p-loop 0.0734476845411023
atp 0.072140480284921
membran 0.0716559307245259
pir 0.0715983896271713
mitochondrion 0.0713704324090332
…
…

------RANKED RESULTS------
------RESULT 1------
Pmid: 8496185
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=8496185&dopt=Abstract
Journal: The Journal of biological chemistry.
Article Title: Molecular analysis of the essential gene for adenylate 
kinase from the fission yeast Schizosaccharomyces pombe.
Year: 1993
Year: May
Year: 25
Searches :

adk ( 20 )
Relevance scores: 0.346312134114352 (normalized), 0.346312134114352 
(raw)
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------RESULT 2------
Pmid: 8537371
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=8537371&dopt=Abstract
Journal: The Journal of biological chemistry.
Article Title: Strain-dependent occurrence of functional GTP:AMP 
phosphotransferase (AK3) in Saccharomyces cerevisiae.
Year: 1995
Year: Dec
Year: 29
Searches :

ak ( 46 )
pak ( 25 )
aki ( 36 )
adk ( 125 )

Relevance scores: 0.336086274632716 (normalized), 0.336086274632716 
(raw)
------RESULT 3------
Pmid: 8439550
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=8439550&dopt=Abstract
Journal: Biochimica et biophysica acta.
Article Title: Identification and characterization of a yeast gene 
encoding an adenylate kinase homolog.
Year: 1993
Year: Feb
Year: 20
Searches :

adk ( 6 )
Relevance scores: 0.335616794642753 (normalized), 0.335616794642753 
(raw)
------RESULT 4------
Pmid: 2199332
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=2199332&dopt=Abstract
Journal: Gene.
Article Title: Isolation of a novel protein kinase-encoding gene from 
yeast by oligodeoxyribonucleotide probing.
Year: 1990
Year: May
Year: 31
Searches :

kinase-encoding ( 173 )
Relevance scores: 0.328380689806839 (normalized), 0.328380689806839 
(raw)
------RESULT 5------
Pmid: 7483841
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=7483841&dopt=Abstract
Journal: Yeast (Chichester, England)
Article Title: Sequence analysis of a 33.1 kb fragment from the left 
arm of Saccharomyces cerevisiae chromosome X, including putative 
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proteins with leucine zippers, a fungal Zn(II)2-Cys6 binuclear cluster 
domain and a putative alpha 2-SCB-alpha 2 binding site.
Year: 1995
Year: Jun
Year: 15
Searches :

put ( 22 )
Relevance scores: 0.323175507765449 (normalized), 0.323175507765449 
(raw)
------RESULT 6------
Pmid: 10620778
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=10620778&dopt=Abstract
Journal: Yeast (Chichester, England)
Article Title: Isolation and sequence of the HOG1 homologue from 
Debaryomyces hansenii by complementation of the hog1Delta strain of 
Saccharomyces cerevisiae.
Year: 2000
Year: Jan
Year: 15
Searches :

cerevisia ( 198 )
saccharomyc ( 111 )

Relevance scores: 0.322399541780529 (normalized), 0.322399541780529 
(raw)
------RESULT 7------
Pmid: 1587477
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=1587477&dopt=Abstract
Journal: Gene.
Article Title: A putative second adenylate kinase-encoding gene from 
the yeast Saccharomyces cerevisiae.
Year: 1992
Year: May
Year: 1
Searches :

adk ( 3 )
Relevance scores: 0.322140449905575 (normalized), 0.322140449905575 
(raw)
------RESULT 8------
Pmid: 8515773
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=8515773&dopt=Abstract
Journal: Molecular and biochemical parasitology.
Article Title: A Trypanosoma brucei gene family encoding protein 
kinases with catalytic domains structurally related to Nek1 and NIMA.
Year: 1993
Year: May
Searches :

kinase-encoding ( 78 )
Relevance scores: 0.319459805585679 (normalized), 0.319459805585679 
(raw)
------RESULT 9------
Pmid: 14681421
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Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=14681421&dopt=Abstract
Journal: Nucleic acids research.
Article Title: Saccharomyces Genome Database (SGD) provides tools to 
identify and analyze sequences from Saccharomyces cerevisiae and 
related sequences from other organisms.
Year: 2004
Year: Jan
Year: 1
Searches :

sgd ( 14 )
saccharomyc ( 11 )

Relevance scores: 0.319087654473805 (normalized), 0.319087654473805 
(raw)
------RESULT 10------
Pmid: 7926721
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=7926721&dopt=Abstract
Journal: Genes &amp; development.
Article Title: The Doa locus encodes a member of a new protein kinase 
family and is essential for eye and embryonic development in Drosophila 
melanogaster.
Year: 1994
Year: May
Year: 15
Searches :

kinase-encoding ( 108 )
Relevance scores: 0.312693121259224 (normalized), 0.312693121259224 
(raw)
------RESULT 11------
Pmid: 2022322
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=2022322&dopt=Abstract
Journal: Gene.
Article Title: Structural and functional conservation between the high-
affinity K+ transporters of Saccharomyces uvarum and Saccharomyces 
cerevisiae.
Year: 1991
Year: Mar
Year: 1
Searches :

saccharomyc ( 7 )
Relevance scores: 0.306951025980308 (normalized), 0.306951025980308 
(raw)
------RESULT 12------
Pmid: 1774787
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=1774787&dopt=Abstract
Journal: Journal of molecular evolution.
Article Title: Evolution of the dec-1 eggshell locus in Drosophila. I. 
Restriction site mapping and limited sequence comparison in the 
melanogaster species subgroup.
Year: 1991
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Year: Oct
Searches :

melanogast ( 33 )
Relevance scores: 0.305639230551114 (normalized), 0.305639230551114 
(raw)
------RESULT 13------
Pmid: 1620094
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=1620094&dopt=Abstract
Journal: Molecular &amp; general genetics : MGG.
Article Title: A new member of the adenylate kinase family in yeast: 
PAK3 is highly homologous to mammalian AK3 and is targeted to 
mitochondria.
Year: 1992
Year: Jun
Searches :

ak ( 65 )
pak ( 7 )

Relevance scores: 0.30517396996688 (normalized), 0.30517396996688 (raw)
------RESULT 14------
Pmid: 2834085
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=2834085&dopt=Abstract
Journal: Current genetics.
Article Title: Chromosomal mapping of the uracil permease gene of 
Saccharomyces cerevisiae.
Year: 1986
Searches :

saccharomyc ( 194 )
Relevance scores: 0.302237799784997 (normalized), 0.302237799784997 
(raw)
------RESULT 15------
Pmid: 10021364
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=10021364&dopt=Abstract
Journal: Current biology : CB.
Article Title: A Drosophila TNF-receptor-associated factor (TRAF) binds 
the ste20 kinase Misshapen and activates Jun kinase.
Year: 1999
Year: Jan
Year: 28
Searches :

drosophila ( 175 )
Relevance scores: 0.301733915533769 (normalized), 0.301733915533769 
(raw)
------RESULT 16------
Pmid: 8017101
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=8017101&dopt=Abstract
Journal: Yeast (Chichester, England)
Article Title: Sequence comparison of the ARG4 chromosomal regions from 
the two related yeasts, Saccharomyces cerevisiae and Saccharomyces 
douglasii.
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Year: 1994
Year: Mar
Searches :

saccharomyc ( 6 )
Relevance scores: 0.301032581068433 (normalized), 0.301032581068433 
(raw)
------RESULT 17------
Pmid: 2656692
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=2656692&dopt=Abstract
Journal: The Journal of biological chemistry.
Article Title: Molecular cloning of Saccharomyces cerevisiae CDC6 gene. 
Isolation, identification, and sequence analysis.
Year: 1989
Year: May
Year: 25
Searches :

saccharomyc ( 29 )
Relevance scores: 0.300906980668241 (normalized), 0.300906980668241 
(raw)
------RESULT 18------
Pmid: 1729597
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=1729597&dopt=Abstract
Journal: Molecular and cellular biology.
Article Title: Dominant mutations in a gene encoding a putative protein 
kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae 
protein kinase C homolog.
Year: 1992
Year: Jan
Searches :

kinase-encoding ( 30 )
Relevance scores: 0.300575255605413 (normalized), 0.300575255605414 
(raw)
------RESULT 19------
Pmid: 1592264
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=1592264&dopt=Abstract
Journal: Genes &amp; development.
Article Title: Interaction of murine ets-1 with GGA-binding sites 
establishes the ETS domain as a new DNA-binding motif.
Year: 1992
Year: Jun
Searches :

et ( 21 )
Relevance scores: 0.298612573458432 (normalized), 0.298612573458431 
(raw)
------RESULT 20------
Pmid: 15550393
Link to PubMed: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&li
st_uids=15550393&dopt=Abstract
Journal: The Journal of biological chemistry.
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Article Title: Activation of p21-activated kinase 6 by MAP kinase
kinase 6 and p38 MAP kinase.
Year: 2005
Year: Feb
Year: 4
Searches :

map ( 62 )
Relevance scores: 0.297846716340132 (normalized), 0.297846716340132 
(raw)
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Appendix 5 Average .05 and 1.0 AUC values for TrEMBL 

proteins

Average .05 and 1.0 AUC values (sorted descending by AUC value, then descending by 

perc Features Kept) for 100 randomly sampled TrEMBL proteins and for different values 

for the four parameters GO Wt, PFAM Wt, Perc Features Kept, and pre-IDF applied.

GO Wt PFAM Wt Perc Features Kept pre-IDF applied? .05 AUC
0 0.2 1 1 0.03226933
0 0.2 0.9 1 0.03226933
0 0.2 0.8 1 0.03226933
0 0.2 0.7 1 0.03226933
0 0.2 0.6 1 0.03226933
0 0.2 0.5 1 0.03226933
0 0.2 0.4 1 0.03226905
0 0.2 0.3 1 0.03226719
0 0.2 0.2 1 0.03225249
0 0.1 1 1 0.03219563
0 0.1 0.9 1 0.03219563
0 0.1 0.8 1 0.03219563
0 0.1 0.7 1 0.03219563
0 0.1 0.6 1 0.03219563
0 0.1 0.5 1 0.03219563
0 0.1 0.4 1 0.03219556
0 0.1 0.3 1 0.03219438
0 0.2 0.1 1 0.03218699
0 0.1 0.2 1 0.03217805
0 0.1 0.1 1 0.03213521
0 0.3 1 1 0.03212749
0 0.3 0.9 1 0.03212749
0 0.3 0.8 1 0.03212749
0 0.3 0.7 1 0.03212749
0 0.3 0.6 1 0.03212749
0 0.3 0.5 1 0.03212749
0 0.3 0.4 1 0.03212723
0 0.3 0.3 1 0.03212499
0 0.3 0.2 1 0.03210133
0 0.3 0.1 1 0.03199315
0 0.4 0.3 1 0.03190595
0 0.4 1 1 0.03190503
0 0.4 0.9 1 0.03190503



163

0 0.4 0.8 1 0.03190503
0 0.4 0.7 1 0.03190503
0 0.4 0.6 1 0.03190503
0 0.4 0.5 1 0.03190503
0 0.4 0.4 1 0.03190463
0 0.4 0.2 1 0.03187975
0 0.4 0.1 1 0.03178714
0 0.5 1 1 0.03166559
0 0.5 0.9 1 0.03166559
0 0.5 0.8 1 0.03166559
0 0.5 0.7 1 0.03166559
0 0.5 0.6 1 0.03166559
0 0.5 0.5 1 0.03166559
0 0.5 0.4 1 0.03166495
0 0.5 0.3 1 0.03166376
0 0.5 0.2 1 0.03163302
0 0.5 0.1 1 0.03148492
0 0.6 1 1 0.03139155
0 0.6 0.9 1 0.03139155
0 0.6 0.8 1 0.03139155
0 0.6 0.7 1 0.03139155
0 0.6 0.6 1 0.03139155
0 0.6 0.5 1 0.03139155
0 0.6 0.4 1 0.03139096
0 0.6 0.3 1 0.03139022
0 0.6 0.2 1 0.03136572
0 0 1 1 0.03131128
0 0 0.9 1 0.03131128
0 0 0.8 1 0.03131128
0 0 0.7 1 0.03131128
0 0 0.6 1 0.03131128
0 0 0.5 1 0.03131128
0 0 0.4 1 0.03131128
0 0 0.3 1 0.03131128
0 0 0.2 1 0.03131105
0 0 0.1 1 0.03130795
0 0.6 0.1 1 0.03119433

0.1 0 0.3 1 0.0287276
0.1 0 1 1 0.02872664
0.1 0 0.9 1 0.02872664
0.1 0 0.8 1 0.02872664
0.1 0 0.7 1 0.02872664
0.1 0 0.6 1 0.02872664
0.1 0 0.4 1 0.02872663
0.1 0 0.5 1 0.02872662
0.1 0 0.2 1 0.02872459
0.1 0 0.1 1 0.02865226
0.2 0 0.3 1 0.02694185
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0.2 0 0.4 1 0.02693719
0.2 0 0.5 1 0.02693667
0.2 0 1 1 0.02693666
0.2 0 0.9 1 0.02693666
0.2 0 0.8 1 0.02693666
0.2 0 0.7 1 0.02693666
0.2 0 0.6 1 0.02693666
0.2 0 0.2 1 0.02693259
0.2 0 0.1 1 0.02681958
0.3 0 0.3 1 0.02566895
0.3 0 0.4 1 0.02566634
0.3 0 1 1 0.0256653
0.3 0 0.9 1 0.0256653
0.3 0 0.8 1 0.0256653
0.3 0 0.7 1 0.0256653
0.3 0 0.6 1 0.0256653
0.3 0 0.5 1 0.02566521
0.3 0 0.2 1 0.02565918
0.3 0 0.1 1 0.02544624
0.4 0 0.3 1 0.02478174
0.4 0 0.4 1 0.02477942
0.4 0 0.5 1 0.02477875
0.4 0 1 1 0.02477874
0.4 0 0.9 1 0.02477874
0.4 0 0.8 1 0.02477874
0.4 0 0.7 1 0.02477874
0.4 0 0.6 1 0.02477874
0.4 0 0.2 1 0.02475805
0.4 0 0.1 1 0.02447707
0.5 0 0.4 1 0.02414431
0.5 0 0.5 1 0.02414315
0.5 0 1 1 0.02414312
0.5 0 0.9 1 0.02414312
0.5 0 0.8 1 0.02414312
0.5 0 0.7 1 0.02414312
0.5 0 0.6 1 0.02414312
0.5 0 0.3 1 0.02414224
0.5 0 0.1 1 0.02383403
0 0.6 1 0 0.02053266
0 0.6 0.9 0 0.02053266
0 0.6 0.8 0 0.02053266
0 0.6 0.7 0 0.02053266
0 0.6 0.6 0 0.02053119
0 0.6 0.5 0 0.02052796
0 0.6 0.4 0 0.02051924
0 0.5 0.7 0 0.02051916
0 0.5 1 0 0.02051909
0 0.5 0.9 0 0.02051909
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0 0.5 0.8 0 0.02051909
0 0.5 0.6 0 0.02051803
0 0.5 0.5 0 0.02051378
0 0.5 0.4 0 0.02050484
0 0.4 1 0 0.02044174
0 0.4 0.9 0 0.02044174
0 0.4 0.8 0 0.02044174
0 0.4 0.7 0 0.02044128
0 0.6 0.3 0 0.02044075
0 0.4 0.6 0 0.0204403
0 0.4 0.4 0 0.02043515
0 0.4 0.5 0 0.02043253
0 0.5 0.3 0 0.02041186
0 0.4 0.3 0 0.02037361
0 0.3 1 0 0.02025335
0 0.3 0.9 0 0.02025335
0 0.3 0.8 0 0.02025335
0 0.3 0.7 0 0.02025293
0 0.3 0.6 0 0.02025241
0 0.3 0.5 0 0.02024226
0 0.3 0.4 0 0.02024189
0 0.5 0.2 0 0.02020292
0 0.6 0.2 0 0.02020221
0 0.3 0.3 0 0.02017879
0 0.4 0.2 0 0.02009239
0 0.3 0.2 0 0.019908
0 0.2 0.6 0 0.01986638
0 0.2 1 0 0.01986622
0 0.2 0.9 0 0.01986622
0 0.2 0.8 0 0.01986622
0 0.2 0.7 0 0.0198658
0 0.2 0.5 0 0.01986351
0 0.2 0.4 0 0.01984901
0 0.2 0.3 0 0.01980921
0 0.6 0.1 0 0.0196964
0 0.5 0.1 0 0.01960129
0 0.2 0.2 0 0.01955873
0 0.4 0.1 0 0.01949362
0 0.3 0.1 0 0.01921435
0 0.1 1 0 0.01917276
0 0.1 0.9 0 0.01917276
0 0.1 0.8 0 0.01917276
0 0.1 0.7 0 0.01917234
0 0.1 0.6 0 0.01917223
0 0.1 0.5 0 0.01917195
0 0.1 0.4 0 0.01916157
0 0.1 0.3 0 0.01912103
0 0.1 0.2 0 0.01895125
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0 0.2 0.1 0 0.01885197
0 0.1 0.1 0 0.0182605
0 0 1 0 0.01791437
0 0 0.9 0 0.01791437
0 0 0.8 0 0.01791437
0 0 0.7 0 0.01791437
0 0 0.6 0 0.01791437
0 0 0.5 0 0.01791437
0 0 0.4 0 0.0179143
0 0 0.3 0 0.01790658
0 0 0.2 0 0.01782088
0 0 0.1 0 0.01709111

0.1 0 0.7 0 0.01005948
0.1 0 1 0 0.01005943
0.1 0 0.9 0 0.01005943
0.1 0 0.8 0 0.01005943
0.1 0 0.6 0 0.01005877
0.1 0 0.5 0 0.0100574
0.1 0 0.4 0 0.01004995
0.1 0 0.3 0 0.0100246
0.1 0 0.2 0 0.00991317
0.1 0 0.1 0 0.00959619
0.2 0 1 0 0.00827719
0.2 0 0.9 0 0.00827719
0.2 0 0.8 0 0.00827719
0.2 0 0.7 0 0.00827719
0.2 0 0.6 0 0.00827617
0.2 0 0.5 0 0.00827482
0.2 0 0.4 0 0.00827342
0.2 0 0.3 0 0.00823758
0.2 0 0.2 0 0.00819601
0.2 0 0.1 0 0.00792511
0.3 0 0.7 0 0.00759724
0.3 0 1 0 0.00759714
0.3 0 0.9 0 0.00759714
0.3 0 0.8 0 0.00759714
0.3 0 0.6 0 0.00759539
0.3 0 0.5 0 0.00759173
0.3 0 0.4 0 0.0075853
0.3 0 0.3 0 0.00754955
0.3 0 0.2 0 0.00750707
0.3 0 0.1 0 0.00730218
0.4 0 1 0 0.00722004
0.4 0 0.9 0 0.00722004
0.4 0 0.8 0 0.00722004
0.4 0 0.7 0 0.00722004
0.4 0 0.6 0 0.00721857
0.4 0 0.5 0 0.0072152
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0.4 0 0.4 0 0.0072041
0.4 0 0.3 0 0.00717755
0.4 0 0.2 0 0.00714179
0.5 0 0.7 0 0.00699412
0.5 0 1 0 0.0069941
0.5 0 0.9 0 0.0069941
0.5 0 0.8 0 0.0069941
0.5 0 0.6 0 0.00699256
0.5 0 0.5 0 0.0069906
0.5 0 0.4 0 0.00697842
0.4 0 0.1 0 0.00696236
0.5 0 0.3 0 0.00695857
0.5 0 0.1 0 0.00670413

GO Wt PFAM Wt Perc Features Kept pre-IDF applied? 1.0 AUC
0 0.1 1 1 0.927418459
0 0.1 0.9 1 0.927418459
0 0.1 0.8 1 0.927418459
0 0.1 0.7 1 0.927418459
0 0.1 0.6 1 0.927418459
0 0.1 0.5 1 0.927418459
0 0.1 0.4 1 0.927399173
0 0.1 0.3 1 0.927380207
0 0.2 1 1 0.927225042
0 0.2 0.9 1 0.927225042
0 0.2 0.8 1 0.927225042
0 0.2 0.7 1 0.927225042
0 0.2 0.6 1 0.927225042
0 0.2 0.5 1 0.927225042
0 0.2 0.4 1 0.927201928
0 0.2 0.3 1 0.927167249
0 0.1 0.2 1 0.92715958
0 0.2 0.2 1 0.926720119
0 0.1 0.1 1 0.926307698
0 0.3 1 1 0.925988632
0 0.3 0.9 1 0.925988632
0 0.3 0.8 1 0.925988632
0 0.3 0.7 1 0.925988632
0 0.3 0.6 1 0.925988632
0 0.3 0.5 1 0.925988632
0 0.3 0.3 1 0.92598823
0 0.3 0.4 1 0.925973219
0 0.2 0.1 1 0.925318643
0 0.3 0.2 1 0.925314409
0 0.4 1 1 0.924511333
0 0.4 0.9 1 0.924511333
0 0.4 0.8 1 0.924511333
0 0.4 0.7 1 0.924511333
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0 0.4 0.6 1 0.924511333
0 0.4 0.5 1 0.924511333
0 0.4 0.3 1 0.924496517
0 0.4 0.4 1 0.92449225
0 0.4 0.2 1 0.923874846
0 0.5 1 1 0.922956837
0 0.5 0.9 1 0.922956837
0 0.5 0.8 1 0.922956837
0 0.5 0.7 1 0.922956837
0 0.5 0.6 1 0.922956837
0 0.5 0.5 1 0.922956837
0 0.5 0.3 1 0.922950402
0 0.5 0.4 1 0.922936315
0 0.3 0.1 1 0.922854303
0 0.5 0.2 1 0.922728792
0 0.4 0.1 1 0.921697851
0 0.6 0.3 1 0.921435344
0 0.6 1 1 0.921412749
0 0.6 0.9 1 0.921412749
0 0.6 0.8 1 0.921412749
0 0.6 0.7 1 0.921412749
0 0.6 0.6 1 0.921412749
0 0.6 0.5 1 0.921412749
0 0.6 0.4 1 0.92139326
0 0.6 0.2 1 0.921210287
0 0 1 1 0.920262344
0 0 0.9 1 0.920262344
0 0 0.8 1 0.920262344
0 0 0.7 1 0.920262344
0 0 0.6 1 0.920262344
0 0 0.5 1 0.920262344
0 0 0.4 1 0.920262344
0 0 0.3 1 0.920262344
0 0 0.2 1 0.920258842
0 0 0.1 1 0.920091065
0 0.5 0.1 1 0.919956702
0 0.6 0.1 1 0.917813697

0.1 0 0.2 1 0.915287299
0.1 0 0.1 1 0.915249164
0.1 0 0.3 1 0.915048147
0.1 0 1 1 0.915046856
0.1 0 0.9 1 0.915046856
0.1 0 0.8 1 0.915046856
0.1 0 0.7 1 0.915046856
0.1 0 0.6 1 0.915046856
0.1 0 0.5 1 0.915046448
0.1 0 0.4 1 0.915042976
0.2 0 0.2 1 0.907042642
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0.2 0 0.1 1 0.906995415
0.2 0 1 1 0.906583199
0.2 0 0.9 1 0.906583199
0.2 0 0.8 1 0.906583199
0.2 0 0.7 1 0.906583199
0.2 0 0.6 1 0.906583199
0.2 0 0.5 1 0.906582235
0.2 0 0.4 1 0.906575252
0.2 0 0.3 1 0.90655842
0.3 0 0.2 1 0.900802124
0.3 0 0.3 1 0.900317219
0.3 0 1 1 0.900310623
0.3 0 0.9 1 0.900310623
0.3 0 0.8 1 0.900310623
0.3 0 0.7 1 0.900310623
0.3 0 0.6 1 0.900310623
0.3 0 0.5 1 0.900309838
0.3 0 0.4 1 0.900306975
0.3 0 0.1 1 0.899705373
0.4 0 0.2 1 0.89588402
0.4 0 0.3 1 0.895466647
0.4 0 1 1 0.895458373
0.4 0 0.9 1 0.895458373
0.4 0 0.8 1 0.895458373
0.4 0 0.7 1 0.895458373
0.4 0 0.6 1 0.895458373
0.4 0 0.5 1 0.895458079
0.4 0 0.4 1 0.895451159
0.4 0 0.1 1 0.893990864
0.5 0 1 1 0.891547562
0.5 0 0.9 1 0.891547562
0.5 0 0.8 1 0.891547562
0.5 0 0.7 1 0.891547562
0.5 0 0.6 1 0.891547562
0.5 0 0.5 1 0.891547123
0.5 0 0.4 1 0.891543714
0.5 0 0.3 1 0.891471505
0.5 0 0.1 1 0.889662395
0 0.4 0.4 0 0.860175925
0 0.4 1 0 0.860168342
0 0.4 0.9 0 0.860168342
0 0.4 0.8 0 0.860168342
0 0.4 0.7 0 0.860167313
0 0.4 0.6 0 0.860155259
0 0.3 0.4 0 0.860148874
0 0.4 0.5 0 0.860134119
0 0.3 1 0 0.860090882
0 0.3 0.9 0 0.860090882
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0 0.3 0.8 0 0.860090882
0 0.3 0.7 0 0.860088424
0 0.3 0.6 0 0.860077572
0 0.3 0.5 0 0.860034918
0 0.5 0.7 0 0.859733596
0 0.5 1 0 0.85973313
0 0.5 0.9 0 0.85973313
0 0.5 0.8 0 0.85973313
0 0.5 0.6 0 0.859720947
0 0.5 0.5 0 0.859685219
0 0.5 0.4 0 0.859571983
0 0.3 0.3 0 0.859487188
0 0.4 0.3 0 0.859334849
0 0.2 0.4 0 0.859156266
0 0.2 1 0 0.859123408
0 0.2 0.9 0 0.859123408
0 0.2 0.8 0 0.859123408
0 0.2 0.7 0 0.859120455
0 0.2 0.6 0 0.859116082
0 0.2 0.5 0 0.859100624
0 0.6 0.7 0 0.859015099
0 0.6 1 0 0.859014732
0 0.6 0.9 0 0.859014732
0 0.6 0.8 0 0.859014732
0 0.6 0.6 0 0.858999012
0 0.6 0.5 0 0.858957891
0 0.6 0.4 0 0.858758813
0 0.2 0.3 0 0.858698273
0 0.5 0.3 0 0.858221514
0 0.6 0.3 0 0.857490193
0 0.1 0.4 0 0.85637968
0 0.1 1 0 0.856335328
0 0.1 0.9 0 0.856335328
0 0.1 0.8 0 0.856335328
0 0.1 0.7 0 0.856333924
0 0.1 0.6 0 0.856330397
0 0.1 0.5 0 0.856327404
0 0.3 0.2 0 0.856273781
0 0.2 0.2 0 0.856214732
0 0.1 0.3 0 0.855795543
0 0.4 0.2 0 0.855183156
0 0.5 0.2 0 0.854868523
0 0.1 0.2 0 0.853912353
0 0.6 0.2 0 0.853545315
0 0 1 0 0.849313752
0 0 0.9 0 0.849313752
0 0 0.8 0 0.849313752
0 0 0.7 0 0.849313752
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0 0 0.6 0 0.849313752
0 0 0.5 0 0.849313752
0 0 0.4 0 0.849313752
0 0 0.3 0 0.849239801
0 0 0.2 0 0.84844112
0 0.5 0.1 0 0.846103585
0 0.4 0.1 0 0.846096159
0 0.6 0.1 0 0.845719287
0 0.3 0.1 0 0.844952441
0 0.2 0.1 0 0.844545819
0 0.1 0.1 0 0.843920554
0 0 0.1 0 0.837379538

0.1 0 1 0 0.798235804
0.1 0 0.9 0 0.798235804
0.1 0 0.8 0 0.798235804
0.1 0 0.7 0 0.798235292
0.1 0 0.6 0 0.798227836
0.1 0 0.5 0 0.79818086
0.1 0 0.4 0 0.798057907
0.1 0 0.3 0 0.79745182
0.1 0 0.2 0 0.794274812
0.1 0 0.1 0 0.786972726
0.2 0 1 0 0.774103461
0.2 0 0.9 0 0.774103461
0.2 0 0.8 0 0.774103461
0.2 0 0.7 0 0.774102998
0.2 0 0.6 0 0.774087745
0.2 0 0.5 0 0.774000066
0.2 0 0.4 0 0.773825807
0.2 0 0.3 0 0.772839322
0.2 0 0.2 0 0.770281592
0.2 0 0.1 0 0.763802265
0.3 0 1 0 0.761292369
0.3 0 0.9 0 0.761292369
0.3 0 0.8 0 0.761292369
0.3 0 0.7 0 0.761292072
0.3 0 0.6 0 0.761273574
0.3 0 0.5 0 0.761196197
0.3 0 0.4 0 0.76094147
0.3 0 0.3 0 0.759592558
0.3 0 0.2 0 0.757211099
0.4 0 1 0 0.753255644
0.4 0 0.9 0 0.753255644
0.4 0 0.8 0 0.753255644
0.4 0 0.7 0 0.75325525
0.4 0 0.6 0 0.75323626
0.4 0 0.5 0 0.753168826
0.4 0 0.4 0 0.752626448
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0.4 0 0.3 0 0.751476699
0.3 0 0.1 0 0.750840502
0.4 0 0.2 0 0.749353571
0.5 0 1 0 0.747748232
0.5 0 0.9 0 0.747748232
0.5 0 0.8 0 0.747748232
0.5 0 0.7 0 0.747747713
0.5 0 0.6 0 0.747728178
0.5 0 0.5 0 0.747642659
0.5 0 0.4 0 0.747060672
0.5 0 0.3 0 0.746006021
0.4 0 0.1 0 0.743414865
0.5 0 0.1 0 0.736150694
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Appendix 6 Results of paired t-tests for testing 

significance of results for TrEMBL from chapter 5.

The t-tests were done using Microsoft Excel 2003’s Data Analysis add-in. For both .05 

AUC and 1.0 AUC we demonstrate (with a figure showing the output of the paired t-test 

below each bullet point below) that the means are statistically significantly different for 

the below pairs of conditions. The P-value to look at is the one-tail value since the 

hypothesis is that one condition will improve the AUC score (i.e. result in a statistically 

different mean AUC value).

 PFAM and GO weights of 0, percent features kept of 0.5; comparing no pre-IDF 

step versus pre-IDF step, with the hypothesis that the pre-IDF step will improve 

the .05 AUC score. This is borne out by the highly significant one-tail P-value of

1.82527E-31.

no pre-IDF pre-IDF
Mean 0.017914374 0.03131128
Variance 0.00010387 0.000112774
Observations 100 100
Pearson Correlation 0.714657717
Hypothesized Mean 
Difference 0
df 99
t Stat -17.02114064
P(T<=t) one-tail 1.82527E-31
t Critical one-tail 1.660391157
P(T<=t) two-tail 3.65054E-31

t Critical two-tail 1.9842169

 GO weight of 0, percent features kept of 0.5 and pre-IDF step; comparing PFAM 

weight of 0 to PFAM weight of 0.2, with the hypothesis that the weight of 0.2 
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will improve the .05 AUC score. Again, the hypothesis is borne out but at a 

smaller (but still highly significant) one-tail P-value of 0.001744804.

PFAM 0 PFAM 0.2

Mean 0.03131128 0.032269328
Variance 0.000112774 0.00011118
Observations 100 100
Pearson Correlation 0.954268603
Hypothesized Mean 
Difference 0
df 99

t Stat
-

2.992853593
P(T<=t) one-tail 0.001744804
t Critical one-tail 1.660391157
P(T<=t) two-tail 0.003489608

t Critical two-tail 1.9842169

 No pre-IDF step, GO weight of 0, percent features kept of 0.5; comparing PFAM 

weight of 0 to PFAM weight of 0.6, with the hypothesis that the weight of 0.6 

will improve the .05 AUC score. This is borne out by the significant one-tail P-

value of 1.80004E-05.

PFAM 0 PFAM 0.6

Mean 0.017914374 0.020527959
Variance 0.00010387 0.000117757
Observations 100 100
Pearson Correlation 0.837114435
Hypothesized Mean 
Difference 0
df 99
t Stat -4.3281505
P(T<=t) one-tail 1.80004E-05
t Critical one-tail 1.660391157
P(T<=t) two-tail 3.60008E-05

t Critical two-tail 1.9842169

 PFAM and GO weights of 0, percent features kept of 0.5; comparing no pre-IDF 

step versus pre-IDF step, with the hypothesis that the pre-IDF step will improve 
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the 1.0 AUC score. This is borne out by the highly significant one-tail P-value of

1.07767E-24.

no pre-IDF pre-IDF

Mean 0.849313752 0.920262344
Variance 0.008145876 0.004643865
Observations 100 100
Pearson Correlation 0.818618518
Hypothesized Mean 
Difference 0
df 99
t Stat -13.60388477
P(T<=t) one-tail 1.07767E-24
t Critical one-tail 1.660391157
P(T<=t) two-tail 2.15533E-24

t Critical two-tail 1.9842169

 GO weight of 0, percent features kept of 0.5 and pre-IDF step; comparing PFAM 

weight of 0 to PFAM weight of 0.1, with the hypothesis that the weight of 0.1 

will improve the 1.0 AUC score. The hypothesis is borne out at a smaller (but 

still highly significant) one-tail P-value of 0.00091023.

PFAM 0 PFAM 0.1

Mean 0.920262344 0.927418459
Variance 0.004643865 0.003610441
Observations 100 100
Pearson Correlation 0.947039754
Hypothesized Mean 
Difference 0
df 99

t Stat
-

3.204617438
P(T<=t) one-tail 0.00091023
t Critical one-tail 1.660391157
P(T<=t) two-tail 0.001820459

t Critical two-tail 1.9842169

 No pre-IDF step, GO weight of 0, percent features kept of 0.5; comparing PFAM 

weight of 0 to PFAM weight of 0.4, with the hypothesis that the weight of 0.4 
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will improve the 1.0 AUC score. This is borne out by the significant one-tail P-

value of 0.002952176.

.
PFAM 0 PFAM 0.4

Mean 0.849313752 0.860134119
Variance 0.008145876 0.008609263
Observations 100 100
Pearson Correlation 0.912098936
Hypothesized Mean Difference 0
df 99
t Stat -2.813913422
P(T<=t) one-tail 0.002952176
t Critical one-tail 1.660391157
P(T<=t) two-tail 0.005904352

t Critical two-tail 1.9842169
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Appendix 7 Average .05 and 1.0 AUC values for Swiss-

Prot proteins

Average .05 and 1.0 AUC values (sorted descending by AUC value) for 200 randomly 

sampled Swiss-Prot proteins and for different values for the three parameters GO Wt, 

PFAM Wt, and pre-IDF applied. A constant value of 0.5 was chosen for Perc Features 

Kept.

GO Wt PFAM Wt
Perc Features 

Kept
pre-IDF 

applied? .05 AUC
0 0.1 0.5 1 0.035710069
0 0 0.5 1 0.035667273
0 0.2 0.5 1 0.035598894
0 0.3 0.5 1 0.035449905
0 0.4 0.5 1 0.035273387
0 0.5 0.5 1 0.035075739
0 0.6 0.5 1 0.034880836

0.1 0 0.5 1 0.033101119
0.2 0 0.5 1 0.03152662
0.3 0 0.5 1 0.03052458
0.4 0 0.5 1 0.029841108
0.5 0 0.5 1 0.029324578
0 0.2 0.5 0 0.025253218
0 0.3 0.5 0 0.02521937
0 0.1 0.5 0 0.025167611
0 0.4 0.5 0 0.02511875
0 0.5 0.5 0 0.024973051
0 0 0.5 0 0.024920735
0 0.6 0.5 0 0.024822486

0.1 0 0.5 0 0.019269518
0.2 0 0.5 0 0.01633386
0.3 0 0.5 0 0.01486524
0.4 0 0.5 0 0.014003045
0.5 0 0.5 0 0.013448272

GO Wt PFAM Wt
Perc Features 

Kept pre-IDF applied? 1.0 AUC
0 0.1 0.5 1 0.950538504
0 0 0.5 1 0.950253129
0 0.2 0.5 1 0.950104292
0 0.3 0.5 1 0.949411567
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0 0.4 0.5 1 0.948616386
0 0.5 0.5 1 0.947779343
0 0.6 0.5 1 0.946911817

0.1 0 0.5 1 0.939513618
0.2 0 0.5 1 0.932525065
0.3 0 0.5 1 0.927766385
0.4 0 0.5 1 0.924251327
0.5 0 0.5 1 0.92151618
0 0.1 0.5 0 0.897383042
0 0 0.5 0 0.897098083
0 0.2 0.5 0 0.896862903
0 0.3 0.5 0 0.89594127
0 0.4 0.5 0 0.894805191
0 0.5 0.5 0 0.893529819
0 0.6 0.5 0 0.892189275

0.1 0 0.5 0 0.869953588
0.2 0 0.5 0 0.850793653
0.3 0 0.5 0 0.838570808
0.4 0 0.5 0 0.830194804
0.5 0 0.5 0 0.82409206
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Appendix 8 Results of paired t-tests for testing 

significance of results for Swiss-Prot from chapter 5.

The t-tests were done using Microsoft Excel 2003’s Data Analysis add-in. For both .05 

AUC and 1.0 AUC we provide a figure showing the output of the paired t-test below each 

bullet point for each test tried. The P-value to look at is the one-tail value since the 

hypothesis is that one condition will improve the AUC score (i.e. result in a statistically 

different mean AUC value). In this case for Swiss-Prot, not all tests resulted in 

statistically significantly different means. The pre-IDF step always resulted in a 

statistically significantly improved mean, while the addition of PFAM documents did not 

except for one case (although addition of PFAM documents always resulted in a larger 

mean).

 PFAM and GO weights of 0, percent features kept of 0.5; comparing no pre-IDF 

step versus pre-IDF step, with the hypothesis that the pre-IDF step will improve 

the .05 AUC score. This is borne out by the highly significant one-tail P-value of

1.15955E-51.

No pre-IDF pre-IDF

Mean 0.024920735 0.035667273
Variance 8.94461E-05 4.70996E-05
Observations 200 200
Pearson Correlation 0.634394836
Hypothesized Mean 
Difference 0
df 199
t Stat -20.64490582
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P(T<=t) one-tail 1.15955E-51
t Critical one-tail 1.652546747
P(T<=t) two-tail 2.31911E-51

t Critical two-tail 1.971956498

 GO weight of 0, percent features kept of 0.5 and pre-IDF step; comparing PFAM 

weight of 0 to PFAM weight of 0.1, with the hypothesis that the weight of 0.1 

will improve the .05 AUC score. In this case, although the mean for a PFAM 

weight of 0.1 is greater, the hypothesis is not borne out given that the P-value is 

only 0.221144011 which is greater than the 0.05 significance level. It is still more likely, 

however, that PFAM weight of 0.1 improves performance, but we cannot statistically 

conclude this at commonly accepted levels of significance (0.05).

PFAM 0.1 PFAM 0

Mean 0.035710069 0.035667273
Variance 4.74679E-05 4.70996E-05
Observations 200 200
Pearson Correlation 0.993472165
Hypothesized Mean 
Difference 0
df 199
t Stat 0.769873213
P(T<=t) one-tail 0.221144011
t Critical one-tail 1.652546747
P(T<=t) two-tail 0.442288021

t Critical two-tail 1.971956498

 No pre-IDF step, GO weight of 0, percent features kept of 0.5; comparing PFAM 

weight of 0 to PFAM weight of 0.2, with the hypothesis that the weight of 0.2 

will improve the .05 AUC score. This is borne out by the significant one-tail P 

value of 0.005884367.

PFAM 0.2 PFAM 0

Mean 0.025253218 0.024920735
Variance 8.65155E-05 8.94461E-05
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Observations 200 200
Pearson Correlation 0.980698366
Hypothesized Mean 
Difference 0
df 199
t Stat 2.542452979
P(T<=t) one-tail 0.005884367
t Critical one-tail 1.652546747
P(T<=t) two-tail 0.011768733

t Critical two-tail 1.971956498

 PFAM and GO weights of 0, percent features kept of 0.5; comparing no pre-IDF 

step versus pre-IDF step, with the hypothesis that the pre-IDF step will improve 

the 1.0 AUC score. This is borne out by the highly significant one-tail P-value of 

2.19681E-37.

No pre-IDF pre-IDF

Mean 0.897098083 0.950253129
Variance 0.003908059 0.001343006
Observations 200 200
Pearson Correlation 0.654180762
Hypothesized Mean 
Difference 0
df 199
t Stat -15.83494434
P(T<=t) one-tail 2.19681E-37
t Critical one-tail 1.652546747
P(T<=t) two-tail 4.39361E-37

t Critical two-tail 1.971956498

 GO weight of 0, percent features kept of 0.5 and pre-IDF step; comparing PFAM 

weight of 0 to PFAM weight of 0.1, with the hypothesis that the weight of 0.1 

will improve the 1.0 AUC score. The hypothesis is not borne out as the P-value is 

0.149192923 which is greater than the commonly accepted significance level of 0.05. 

However, the mean for PFAM 0.1 is greater and the P-value is still fairly small, so it is 

more likely than not that adding PFAM documents at weight 0.1 does improve the 1.0 
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AUC.

PFAM 0.1 PFAM 0
Mean 0.950538504 0.950253129
Variance 0.001330293 0.001343006
Observations 200 200
Pearson Correlation 0.994406528
Hypothesized Mean 
Difference 0
df 199
t Stat 1.042627424
P(T<=t) one-tail 0.149192923
t Critical one-tail 1.652546747
P(T<=t) two-tail 0.298385847

t Critical two-tail 1.971956498

 No pre-IDF step, GO weight of 0, percent features kept of 0.5; comparing PFAM 

weight of 0 to PFAM weight of 0.1, with the hypothesis that the weight of 0.1 

will improve the 1.0 AUC score. This is not borne out since the P-value is 

0.224964315 which is greater than the commonly accepted significance level of 0.05. 

However, the mean for PFAM 0.1 is greater and by the P-value it is still more likely that 

adding PFAM documents at weight 0.1 does improve the 1.0 AUC.

PFAM 0.1 PFAM 0
Mean 0.897383042 0.897098083
Variance 0.003884362 0.003908059
Observations 200 200
Pearson Correlation 0.996367991
Hypothesized Mean 
Difference 0
df 199
t Stat 0.757027727
P(T<=t) one-tail 0.224964315
t Critical one-tail 1.652546747
P(T<=t) two-tail 0.44992863

t Critical two-tail 1.971956498
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