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Abstract

This thesis consists of three parts, reflecting three levels of Microarray data analysis.

In the first part, we introduce a new normalization method for Affymetrix oligonu-

cleotide based arrays. Our perspective is to find a transformation that matches the distri-

butions of hybridization levels of those probes corresponding to undifferentiated genes

between arrays. We address two important issues. First, array-specific spatial patterns

exist due to uneven hybridization and measurement process. Second, in some cases a

substantially large portion of genes are differentially expressed between a target and

a reference array. For the purpose of normalization we need to identify a subset that

excludes those probes corresponding to differentially expressed genes and abnormal

probes due to experimental variation. Least trimmed squares (LTS) is a natural choice

to achieve this goal. Substantial differentiation is protected in LTS by setting an appro-

priate trimming fraction. To take into account any spatial pattern of hybridization, we

divide each array into sub-arrays and normalize probe intensities within each sub-array.

We illustrate the problem and solution through an Affymetrix spike-in data set with

defined perturbation and a data set of primate brain expression.

In the second part, we describe a novel method to identify substantially perturbed

genes in the treatment/control time course data sets. It is often difficult to compare

expression patterns of a gene of two time courses for the following reasons: (1) the

number of sampling time points may be different or hard to be aligned between the

xiv



treatment and the control time courses; (2) estimation of the function that describes the

expression of a gene in a time course is difficult and error-prone due to the limited num-

ber of time points. We propose a novel method to identify the differentially expressed

genes between two time courses which avoids direct comparison of gene expression

patterns of the two time courses. This method does not require alignment between the

two time courses to be compared. Instead of attempting to “align” and compare the

two time courses directly, we first convert the treatment and control time courses into

two neighborhood systems that reflect the underlying relationships between genes. We

then identify the differentially expressed genes by comparing the two gene relationship

networks from the two neighborhood systems. To verify our method, we apply it to sev-

eral treatment-control time course data sets. The results are consistent with the previous

results and also give some new biologically meaningful findings.

In the third part, we describe our integrative analysis of Microarray data from long-

lived yeast mutants. To understand gene expression change in these mutants from a sys-

tematic perspective, we combine Microarray data with many other data sources, such

as literatures, Gene Ontology, KEGG, and so on. Our results show that these long-

lived mutants share some common features in gene expression changes. Gene cate-

gories involved in basal transcription, translation and ion transportation tend to be down-

regulated. The glycolysis/gluconeogenisis pathway is significantly activated, whereas

the oxidative phosphorylation pathway and the citric acid cycle pathway are somehow

repressed. These findings may shed light on the underlying mechanisms of longevity of

these mutants.
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Chapter 1

Introduction

1.1 Gene expression and Microarray technologies

In the world of bio-molecules, proteins play the key roles as structural components,

enzymes, antibodies, and so on. Genes in DNA molecules carry the encoding informa-

tion for proteins. The flow of this encoding information from genes to proteins involves

two stages: transcription and translation. As shown in Figure 1.1, in transcription, a

DNA segment that constitutes a gene in the DNA molecules is transcribed into a sin-

gle stranded sequence of RNA, called messenger RNA (mRNA). Then in translation,

the mRNA is translated into a sequence of amino acids which finally become a pro-

tein after some modifications. To study the biological system quantitatively, several

techniques have been developed to measure the expression levels of mRNAs and pro-

teins. These techniques include Western Blot, Enzyme-Linked ImmunoSorbent Assay

(ELISA), Mass Spectrometry (MS) and Protein Microarrays for protein expression mea-

suring and serial Analysis of Gene Expression (SAGE), Northern Blot, quantitative RT-

PCR, and DNA Microarrays for mRNA expression measuring. Although expression

levels for mRNA and proteins are both of interest in biological studies, this thesis will

focus on DNA Microarrays data.

To measure the expression levels of genes using the DNA Microarray techniques,

hundreds of thousands of DNA probes are immobilized on a small glass, plastic, or

nylon membrane which is called an array. These probes are designed to stand for certain

amount of genes. mRNAs from the sample cells are hybridized with the probes on the
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array. So by measuring the intensity of the mRNAs hybridized with the probes, we can

have the expression levels of the genes that we’re interested in. This technique enables

us to measure the expression values for hundreds of thousands of genes simultaneously

so that we can observe the changes in genes’ expression systematically. Also with the

aid of the Microarray techniques, we are able to design more intricate experiments to

predict gene function, infer gene regulatory networks, understand disease mechanisms,

et al.

Figure 1.1: A scheme of mRNA in gene transcription and protein translation. Picture is
copied from http://www.accessexcellence.org.
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1.2 Types of Microarrays

There are a number of microarray technologies for large scale gene expression mea-

suring. Among them, cDNA arrays and oligonucleotide arrays are the most popular

approaches. Although they use the same principle, they differ in many aspects.

Figure 1.2: Illustration of cDNA array experiment. From http://www.fao.org.

In a typical cDNA array experiment, mRNAs from two different samples are

extracted and reverse-transcribed into cDNAs which are labeled with dyes of differ-

ent colors if they’re in different samples. Then equal amount of labeled cDNA samples

are mixed together and hybridized with the probes on the array. The probes are spotted

cDNA of hundreds of nucleotides in length. After the hybridization, a laser scanner

measures dye fluorescence of each color at a fine grid of pixels. Higher fluorescence
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indicates higher amount of hybridized cDNA and hence higher gene expression in the

corresponding sample [SSDB95, DIB97]. The experiment procedure described above is

also illustrated in Figure 1.2. After the scanning, we typically have two intensities for

spotted cDNA of two colors and two intensities for the background of two colors. So

there’re at least four quantities for each probe on the cDNA array. Sometimes, these are

accompanied with quantities that measure the quality of the spot, e.g. the variability of

the pixel intensity. Since samples are labeled with different colors and hybridize com-

petitively to the same set of probes, the cDNA array is also called two-channel array.

The two channel array allows measurement of the relative gene expression in the two

samples, i.e. the ratios of the two colors for each spot.

Figure 1.3: Illustration of oligonucleotide array experiment. From http://fig.cox.mi-
ami.edu
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The oligonucleotide arrays are available commercially from several companies, such

as Affymetrix, Illumina, NimbleGen, Agilent et al. Although they use different tech-

niques, they have one thing in common: the short oligonucleotide sequences are used as

probes. For example, in Affymetrx array, each gene is represented by one or more probe

sets, each composed of 11-20 pairs of 25bps long oligonucleotide. Each pair consists

of a perfect match and a mismatch. The mismatch is created by changing the middle

(13th) base of the perfect match sequence to reduce the specific binding of mRNA for

that gene. The goal of mismatch is to control experimental variation and nonspecific

binding of other mRNAs with the probe [Aff01]. Unlike the two-channel cDNA array,

oligonucleotide array is often one-channel: mRNA from only one sample is prepared,

labeled with a fluorescent dye, and hybridized to the probes on an array. After the

hybridization, arrays are scanned, and images are produced and analyzed to obtain a

fluorescence intensity value for each probe. In the probe set level, the typical output for

a probe set includes two vectors of intensity readings, one for perfect matches and the

other for mismatches. The experiment procedure using oligonucleotide arrays is also

illustrated in Figure 1.3.

1.3 Microarray data analysis

Despite the high throughput and high efficiency of microarray technologies, high level

of noises and complex experimental artifacts are associated with microarray data, which

emphasizes the requirement for statistical and data analytic techniques for all stage of

experimentation. Microarray data analysis can roughly be classified into three levels:

low, middle, and high level, according to the stage of experimentation and involvement

of other data sources.
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Low level of data analysis, also termed as signal extraction, includes image analysis,

gene filtering, background correction, probe level analysis and gene summarization for

oligonucleotide arrays, as well as between-array normalization and removal of artifacts

for comparisons across arrays. These kinds of data analysis are performed at the early

stage of microarray experimentation. For example, normalization and summarization

are often performed to obtain expression values of genes from raw data set collected

from Affymetrix gene chips. In Chapter 2, we will give a brief introduction to several

prevalent normalization methods as well as a new method we proposed for Affymetric

arrays, called Sub-Sub.

Middle level of data analysis includes selection of differentially expressed genes

between experimental conditions, clustering/classification of biological samples or

genes, construction of gene co-expression network, et al. For instance, in order to

understand the mechanism of a type of cancer, say lung cancer, we are interested in:

(1) what are the physiologically different between the cells in the tumors and in normal

lung tissues? (2) Which genes show expression change in the tumor cell compared with

normal cell? That is, we try to associate the physiological difference with gene expres-

sion changes so that we can shed light on the mechanism of lung cancer in a molecule

level. When two different conditions are considered, such as disease/non-disease, we

also denote one as treatment and the other as control. Differential expression between

treatment and control can be investigated from a static or temporal viewpoint. In a static

experiment design, snapshots of gene expression levels are taken without considering

the temporal effect. Whereas in a temporal experiment design, also called a time course

design, the gene expression across several time points are measured. To identify dif-

ferentially expressed genes in a static experiment design, a number of approaches have

been proposed, including the two-sample t-test (T-test), the Wilcoxon rank sum test

(WRST), significance analysis of microarrays (SAM) [TTC01], and relative entropy
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based method [YDFQ05]. Several approaches have also developed to identify differ-

entially expresssed genes between time courses in a temporal experiment design. In

Chapter 3, we will first introduce some of them, then we will describe a novel method

we proposed, which is called MARD analysis.

High level of microarray data analysis includes those approaches that integrate

microarray data sets from different platforms or combine microarray data with other data

sources, such as Chip-Chip results, Gene Ontology information, pathway information,

and so on. Great success has been achieved in the past few years by performing high

level microarray data analysis. For example, Segal et al. presented an integrated analy-

sis of 1,975 published microarrays spanning 22 tumor types. They described expression

profiles in different tumors in terms of the behavior of modules, which are gene sets

that act in concert to carry out a specific function. Using a simple unified analysis, they

extracted modules and characterized gene-expression profiles in tumors as a combina-

tion of activated and deactivated modules. Activation of some modules was found to be

specific to particular types of tumor, whereas other modules were shared across a diverse

set of clinical conditions, which suggests the existence of common tumor progression

mechanisms [SFKR04]. In another paper, Subramanian et al. described a method called

Gene Set Enrichment Analysis (GSEA) [STM+05]. This method focuses on gene sets

which are groups of genes that share common biological function, chromosomal loca-

tion, or regulation. Construction of gene sets is based on information collected from

literatures and other sources of data sets. In Chapter 4, we will also apply some inte-

grative analysis to our ageing project and show how the analysis exposes a common

mechanism for longevity in four long-lived yeast mutants.
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Chapter 2

Sub-array normalization for

oligonucleotide array

The high density oligonucleotide array has been widely used in biological studies. Anal-

ysis of oligonucleotide array data includes several steps: image processing, background

correction, normalization, PM correction, and probe set summary. In this chapter, we

first describe the importance of normalization, and introduce several approaches avail-

able for oligonucleotide array normalization. Then we propose a novel normalization

method called Sub-Sub (sub-array normalization subject to differentiation). Our method

allows a substantial differentiation of genes between a target and a reference array. To

evaluate the performance of Sub-Sub normalization, we apply it to both simulated data

sets and real data sets.

2.1 Background

As one of the commercial standards, Affymetric GeneChips R© uses 11-20 probe pairs,

which are short oligonucleotides of 25 bp, to represent each gene, and as a whole they are

called a probe set [Aff01, LDB+96]. Each probe pair consists of a perfect match (PM)

and a mismatch (MM) probe that differ only in the middle (13th) base. MM probes are

designed to measure the non-specific binding. Ideally, probes are arranged on a chip in

a random fashion. But in customized arrays, this is not always true. RNA samples are

prepared, labeled, and hybridized with arrays. Then arrays are scanned and images are
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produced and analyzed to generate an intensity value for each probe. These intensities

represent how much hybridization occurred for each oligonucleotide. Up to now, each

probe is represented by an intensity value. In order to obtain the expression level for a

probe set, we need to combine the intensities of probes corresponding to it. This process

is what so called summarization.

In many of the applications of high density nucleotide arrays, the goal is to seek

the differentiation of mRNA expression among different samples. For example, the

identification of differentially expressed genes in tumor with respect to normal tissue

helps to understand the mechanism of cancers. The variations between samples that

are informative are referred to as “interesting variation”. However, the gene expression

levels measured by microarrays also include variations introduced during the experiment

processes: RNA extraction, fluorescence labeling, hybridization and scanning. These

variations are referred to as “obscuring variation” [ZKM+05]. Direct comparison of

data from different arrays can lead to misleading results and incorrect conclusions due

to the “obscuring variation”. However, this effect will be alleviated if the arrays can

be appropriately normalized [DYCS02, IBC+03]. The purpose of normalization is to

minimize the “obscuring variation” between arrays so that the expression levels of genes

measured by different arrays are comparable. Therefore, normalization is one of the

critical steps for microarray data analysis.

2.2 Normalization approaches for oligonucleotide array

Affymetrix developed a normalization method called scaling normalization, which

scales the intensities so that each array has the same average intensity. It is performed

after summarization in the probe set level. In the probe level (before summariza-

tion), several normalization approaches for oligonucleotide arrays have been proposed.
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Among these normalization methods, “constant” simply carries out scaling normaliza-

tion in the probe level [IBC+03]. The others can be roughly categorized into two classes.

The first class, including “loes” and “contrasts”, is based on M vs A methodology, which

achieves normalization of a target array against a reference array by correcting for non-

central and non-linear bias observed in M-A plot [BIApS03, Ast03]. The second class,

such as “quantiles” and “qspline” [BIApS03, WJJ+02], correct for the nonlinear bias

seen in Q-Q plot. In this section, we will introduce several normalization approaches

that are most frequently used for oligonucleotide arrays.

2.2.1 Loess normalization

This approach is proposed by Dudoit et al. [DYCS02] which is originally applied to

perform within slide normalization for the two color channels of cDNA array. It is based

on the M vs A methodology where M is the difference in log expression values and A

is the average of the log expression values. Bolstad et al. generalized this approach to

normalize probe intensities from two arrays [BIApS03]. The underlying rationale is that

very few genes will have different expressions in two arrays. So an M vs A plot for the

normalized data should have a point cloud centered around the M = 0 axis.

For any two arrays i and j with probe k’s intensities xki and xkj, where k =

1, · · · , p, the M and A are defined as Mk = log2 (xki/xkj) and Ak = log2 (xkixkj).

Loess, a local regression method [Cle79], is used to fit a normalization curve to the M

vs A plot for the Ms and As of all probes. If the fitted M for probe k by the normalization

curve are M̂k, then the normalization adjustment can be formulated as M ′
k = Mk − M̂k.

And the normalized probe intensities are given by x′ki = 2Ak+M ′
k/2 and x′kj = 2Ak−M ′

k2.

For a data set with more than two arrays, the normalization is carried out in a pairwise

manner. To do a within slide normalization, the two channels are treated as two arrays.
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2.2.2 Contrast normalization

This approach is first introduced by Astrand [Ast03]. It is also based on the M vs

A methodology, but this method transforms the data into a set of contrasts before the

normalization.

Suppose one has a data set with k arrays, where each array contains n probes.

Let the n × k matrix Y denote the probe intensities of these arrays. First the data

Y is transformed into a log scale and the basis is changed as the following: Z =

[x, y1, · · · , yk−1] = log Y ·M ′, where M is an orthonormal k × k matrix called trans-

formation matrix. The first row of M is always the 1-vector times
√

1/k and then it

follows that the other rows are a set of orthonormal contrast. In the transformed basis,

a normalization curves is fit using loess for each of the n − 1 yi with respect to x. The

data is then adjusted by using a smooth transformation which adjusts the normalization

curve so that it lies along the horizontal. Data in the normalized state is obtained by

transforming back to the original basis and exponentiating.

2.2.3 Quantiles normalization

Quantile normalization was first introduced by Bolstad et al. in 2003 [BIApS03]. The

goal of the method is to achieve the same distribution of probe intensities for each array

in the data set. If two data vectors have the same distribution, the Q-Q plot of them

is a straight diagonal line. This concept can be extended to n dimensions: if all n data

vectors have the same distribution, then if we plot the quantiles of them in a n dimension

space, we’ll also get a straight diagonal line. Therefore, one could make a set of arrays

have the same distribution of intensities by projecting the points of the n dimensional

quantile plot onto the diagonal.

11



In practice, this is simply achieved by taking the mean quantile and substituting the

value in the original data set by this mean quantile. To do this, one can use the following

algorithm where X is the n × k matrix of the original probe intensities(n probes and k

arrays):

1. Given k array each with n probes, form X of dimension n × k where each array

is a column

2. Sort each column of X to give Xsort

3. Take the means across each row of Xsort and assign this mean to each element in

the row to get X ′
sort

4. Get Xnormalized by rearranging each column of X ′
sort to have the same ordering as

the original X

2.2.4 Qspline normalization

This approach is proposed by Workman et al. [WJJ+02]. It fits a smoothing B-spline

between the quantiles of probe intensities on the array(x) and those on the reference

array (v). The splines are then used as intensity-dependent normalization functions on

the probe intensities of x. After the normalization, the probe intensities of all arrays

share the same distribution with the reference array. The reference array can be any

array in the data or the mean “array” calculated from multiple arrays.

2.2.5 Invariantset normalization

This approach was first used in the dChip software by Li et al. [LW01a, LW01b]. The

normalization is based on a set of probes that belong to non-differentially expressed

genes. This set of probes is called “invariant set”. To identify the “invariant set”, an
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iterative procedure is applied. Specifically, one starts with all n PM probe in an array. If

the probe’s proportion rank difference(absolute rank difference in two arrays divided by

n) is small enough, it is kept for the new set. In this way, a new set of probes is selected,

and the same procedure is applied to the new set iteratively, until the number of probes

in the new set does not decrease anymore. Then based on the invariant set, loess is used

to fit a normalization curve to relate the reference array to an array to be normalized.

2.3 Introduction to Sub-Sub normalization

The development of our normalization method, Sub-Sub (Sub-array normalization

subject to differentiation), was motivated by two important issues that must be con-

sidered in oligonucleotide array normalization: fraction of the differentially expressed

genes and spatial effect of the arrays. Consistently, the first “Sub” in “Sub-Sub” aims

to deal with the spatial effect by dividing the whole array into sub-arrays. The second

“Sub” refers to “subject to differentiation”, which means that our method allows for

large fraction of differentially expressed genes.

2.3.1 Differentiation fraction

Among all the existing normalization methods introduced above, most of them have

the following three assumptions about the data. First, most genes are not differentially

expressed; Second, the number of up-regulated genes roughly equals the number of

down-regulated genes; Third, the above two assumptions hold across the signal-intensity

range. However in the reality, these assumptions are not always true. So we should

consider normalization that is resistant to violation of these assumptions [BIApS03,

ZAZL01, WJJ+02].
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When we compare two arrays in which a substantially large portion of genes are dif-

ferentially expressed, we need to identify a “base” subset for the purpose of normaliza-

tion. This subset should exclude those probes corresponding to differentially expressed

genes and abnormal probes due to experimental variation. A similar concept “invariant

set” has been defined in [SLEW01, TOR+01, KCM02]. To identify the base subset, we

use least trimmed squares (LTS) [RL87] which can estimate the transformation simul-

taneously. The substantially large portion of genes that are differentially expressed are

protected in LTS by setting an appropriate trimming fraction. The exact LTS solution is

computed by a fast and stable algorithm we developed recently [Li04].

2.3.2 Spatial pattern

Array-specific spatial patterns may exist due to uneven hybridization and measurement

process. For example, reagent flow during the washing procedure after hybridization

may be uneven; scanning may be non-uniform. We have observed different spatial

patterns from one array to another. To take this into account, we divide each array into

sub-arrays so that each of them consist of a few hundred probes. The probe intensities

are normalized within each sub-array. Other spatial normalization methods such as that

in [WJJ+02] only consider the spatial effect in background. In comparison, we try

to adjust for spatial effect both in background and in scale. We show that match of

distribution at the array-level can be achieved by normalization at the sub-array level

to a great extent. In cDNA arrays, local subgrid normalization has been proposed by

[vKv+03].
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2.4 Methods

2.4.1 Statistical principle of normalization

Suppose we have two arrays: one reference and one target. Denote the measured fluores-

cence intensities from the target and reference arrays by {Uj, Vj} respectively. Denote

true concentrations of specific binding molecules by (Ũj , Ṽj). Ideally, we expect that

(Uj , Vj)=(Ũj , Ṽj). But in practice, measurement bias exists due to uncontrolled factors

so we need a normalization procedure to adjust measurement. Now let’s have another

look at normalization. Consider a system with (Ũj Ṽj) as input and (Uj , Vj) as output.

Let h = (h1, h2) be the system function that accounts for all uncontrolled biological and

instrumental bias; namely, 



Uj = h1(Ũj) ,

Vj = h2(Ṽj) .

The goal is to reconstruct the input variables (Ũj , Ṽj) based on the output variables

(Uj , Vj). It is a blind inversion problem [Li03], in which both input values and the

effective system are unknown. The general idea is to find a transformation that matches

the distributions of input and output. This leads us to the question: what is the joint

distribution of true concentrations (Ũj , Ṽj)? First, let us assume that the target and

reference array are biologically undifferentiated. Then the differences between the target

and reference are purely caused by random variation and uncontrolled factors. In this

ideal case, it is reasonable to assume that the random variables {(Ũj, Ṽj), j = 1, · · · })

are independent samples from a joint distribution Ψ̃ whose density centers around the

straight line Ũ = Ṽ , namely, E(Ṽ |Ũ) = Ũ . The average deviations from the straight

line measures the accuracy of the experiment. If the effective measurement system h is

not an identity one, then the distribution of the output, denoted by Ψ, could be different

from Ψ̃. An appropriate estimate ĥ of the transformation should satisfy the following:
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the distribution ĥ−1(Ψ) matches Ψ̃, which centers around the line Ṽ = Ũ . In other

words, the right transformation straightens out the distribution of Ψ.

Next we consider the estimation problem. Roughly speaking, only the component

of h1 relative to h2 is estimable. Thus we let v = h2(ṽ). In addition, we assume that h1

is a monotone function. Denote the inverse of h1 by g, then we expect the following to

be valid.

E[Ṽ |Ũ ] = Ũ , or E[V |g(U)] = g(U) .

Proposition 1 Suppose the above equation is valid. Then g is the minimizer of

minl E(V − l(U))2.

According to the well known fact of conditional expectation, E[V |g(U)] = g(U) min-

imizes E[V − l1(g((U))]2 with respect to l1. Next write l1(g(U)) = l(U). This fact

suggests that we estimate g by minimizing
∑

j (vj − g(uj))
2. When necessary, we can

impose smoothness on g by appropriate parametric or non-parametric forms.

2.4.2 Differentiation fraction and undifferentiated probe set

Next we consider a more complicated situation. Suppose that a proportion λ of all the

genes are differentially expressed while other genes are not except for random fluctua-

tions. Consequently, the distribution of the input is a mixture of two components. One

component consists of those undifferentiated genes, and its distribution is similar to Ψ̃.

The other component consists of the differentially expressed genes and is denoted by Γ̃.

Although it is difficult to know the form of Γ̃ as a priori, its contribution to the input is

at most λ. The distribution of the input variables (Ũj , Ṽj) is the mixture (1−λ) Ψ̃+λ Γ̃.

Under the system function h, Ψ̃ and Γ̃ are transformed respectively into distributions

denoted by Ψ and Γ; That is, Ψ = h(Ψ̃), Γ = h(Γ̃). This implies that the distribution of

the output (Uj , Vj) is (1− λ) Ψ + λ Γ. If we can separate the two components Ψ and Γ,
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then the transformation h of some specific form could be estimated from the knowledge

of Ψ̃ and Ψ.

2.4.3 Spatial pattern and sub-arrays

Normalization can be carried out in combination with a stratification strategy. For

cDNA arrays, researchers have proposed to group spots according to the layout of array-

printing so that data within each group share a more similar bias pattern. And then

normalization is applied to each group. This is referred to as within-print-tip-group nor-

malization. On a high-density oligonucleotide array, tens of thousands of probes are laid

out on a chip. To take into account any plausible spatial variation in h, we divide each

chip into sub-arrays, or small squares, and carry out normalization for probes within

each sub-array. To get over any boundary effect, we allow sub-arrays to overlap. A

probe in a overlapping regions gets multiple adjusted values from sub-arrays it belongs

to, and we take their average.

2.4.4 Parameterization

Since each sub-array contains only a few hundred probes, we choose to parameterize

the function g by a simple linear function α + β u, in which the background α and scale

β represent respectively uncontrolled additive and multiplicative effects.

2.4.5 Simple least trimmed squares

Our target solution consists of two parts: 1. identify the “base” subset of probes; 2.

estimate the parameters in the linear model. We adopt least trimmed squares to solve

the problem. Starting with a trimming fraction ρ, set h = [n(1−ρ)]+1. For any (α, β),

define r(α, β)i = vi − (α + β ui); Let H(α,β) be a size-h index set that satisfies the
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following property: |r(α, β)i| ≤ |r(α, β)j|, for any i ∈ H(α,β) and j 6∈ H(α,β). Then the

least trimmed squares estimate (LTS) minimizes

∑
i∈H(α,β)

r(α, β)2
i ,

The solution of LTS can be characterized by either the parameter (α, β) or the size-h

index set H . It is this dual form that we find it ideal for our purpose. Statistically,

LTS is a robust solution for regression problems. On one hand, it can achieve any

given breakdown value by setting a proper trimming fraction. On the other hand, it has
√

n-consistency and asymptotic normality under some conditions. In addition, the LTS

estimator is regression, scale, and affine equivariant [RL87]. Despite its good properties,

LTS has not been widely used because no practically good algorithm exists to implement

computation. Recently we developed a fast and stable algorithm to compute the exact

LTS solution to simple linear problems [Li04]. On an average desktop PC, it solves LTS

for a data set with several thousand points in two seconds.

A LTS solution naturally associates with a size-h index set. By setting a proper

trimming fraction ρ, we expect the corresponding size-h set is a subset of the undiffer-

entiated probes explained earlier. Obviously, the trimming fraction ρ should be larger

than the differentiation fraction λ.

2.4.6 Multiple arrays and reference

In the case of multiple arrays, the strategy of normalization hinges on the selection of

reference. In some experiments, a master reference can be defined. For example, the

time zero array can be set as a reference in a time course experiment. In experiments

of comparing tumor and normal tissues, the normal sample can serve as a reference. In

other cases, the median array or mean array are options for references. Another strategy
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is: first, randomly choose two arrays, one reference and one target, for normalization;

use the normalized target array from the last normalization as the reference for the next

normalization; iterate this procedure until all arrays have been normalized once; and

repeat this loop for several runs. Hereafter we adopt the median polishing method in

RMA [IBC+03] to summarize expression levels from multiple arrays.

The direct result of normalization is the calibration of relative expression levels of an

array with respect to a reference. Suppose we have an ideal reference array with known

concentrations of binding molecules for all probes. Then in theory, we can measure the

absolute expression values of any sample as long as we can normalize its hybridization

arrays with the reference.

2.4.7 Implementation and Sub-Sub normalization

We have developed a module to implement the normalization method describe above,

referred as SUB-SUB normalization. The core code is written in C, and we have an

interfaces with Bioconductor in R [Net, Bio]. The input of this program is a set of

Affymetrix CEL files and output are their CEL files after normalization. Three param-

eters need to be specified: sub-array size, overlapping size and trimming fraction. The

sub-array size specified the size of the sliding window. The overlapping size controls

the smoothness of window-sliding. Trimming fraction specifies the break down value in

LTS. The normalized CEL files generated by the program could be directly read in by

the “affy” package in Bioconductor for further processing such as PM correction, sum-

marization and so on. An experiment with an expected higher differentiation fraction

should be normalized with a higher trimming fraction.
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2.5 Evaluation of Sub-Sub on Spike-in data set

2.5.1 Affymetrix Spike-in data set

Affymetrix Spike-in data set provides a standard to evaluate the performance and

effectiveness of a normalization method. This data set includes 14 groups of

arrays, and each of them consists of 4 replicates, from Affymetrix HG-U95 chips.

Fourteen genes are spiked-in on these arrays at given concentrations and in a

cyclic fashion known as the Latin square design. The data are available from

http://www.affymetrix.com/support/technical/sample data/datasets.affx. Out of the 14

groups of arrays, we chose two groups. The first group contains four arrays:

1521m99hpp av06, 1521n99hpp av06, 1521o99hpp av06 and 1521p99hpp av06. The

second group also contains four arrays: 1521q99hpp av06, 1521r99hpp av06,

1521s99hpp av06 and 1521t99hpp av06. Later we will abbreviate these arrays by M,

N, O, P, Q, R, S, T. As a result, the concentrations of thirteen spiked-in genes are two-

fold lower in the second group than the first group. The concentrations of the remaining

spike-in gene are respectively 0 and 1024 in the two groups. In addition, two other genes

are so controlled that their concentrations are also two-fold lower in the second group

compared to the first one.

As we have claimed, one issue that Sub-Sub aims to deal with is the large differen-

tiation fraction between RNA samples. To test the robustness of Sub-Sub normalization

when there’s a substantial differentiation fraction, we generate an artificial data set with

relatively large fraction of differentiation by perturbing the HG-U95 spike-in data set.

Namely, we randomly choose 20% genes and increase their corresponding probe inten-

sities by 2.5 fold in the four arrays in the second group. We also generate other two

perturbed Spike-in data sets with 1.5 and 1.25 fold increase.
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2.5.2 Parameter selection

Before the normalization, three parameters need to be specified: sub-array size, over-

lapping size and trimming fraction. The sub-array size specified the size of the sliding

window. The overlapping size controls the smoothness of window-sliding. Trimming

fraction specifies the break down value in LTS. We will describe the effect of the three

parameters one by one in the following context.

Sub-array size

Effect of sub-array size on Sub-Sub normalization is shown in Figure 2.1. We per-

form Sub-Sub normalization using different sub-array size that vary from 20 × 20 to

80 × 80. Overlapping size and trimming fraction are fixed to 0 and 80%, respectively.

To make the results comparable, the same PM correction (PM only) and summariza-

tion (medianpolish) method are used after normalization. To do this, the “affy” package

in Bioconductor is used. In Figure 2.1, M-A plots (log ratios of expressions between the

two groups versus the abundance) are summarized from the eight arrays. For a given

pair of arrays, each from a group, the M and A values for all probe sets are calculated.

Pairwise comparison results in 16 M and A values for each probe set. These 16 M and

A values are averaged and then used for M-A plot shown in Figure 2.1. Note that we

will always use PM correction and medianpolish summarization throughout this chapter

unless specified. As can be seen in Figure 2.1, the effect of sub-array size on Sub-Sub

normalization is small. Sub-array sizes ranging from 20×20 to 80×80 result in similar

M-A plots. In general, the smaller the sub-array size is, the more accurately we can

capture the spatial bias while the less number of probes are left for estimation of linear

relation. Thus, we need to trade off between bias and variation. From our experiments, a

sub-array size from 20×20 to 80×80 works well for Affymetrix HG-U95 and HG-U133

chips.
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Figure 2.1: Effect of sub-array size on Sub-Sub normalization. M-A plots of Spike-in
data are shown after Sub-Sub normalization:(A) sub-array size is 80× 80; (B) sub-array
size is 60 × 60; (C) sub-array size is 40 × 40; (D) sub-array size is 20 × 20; In all the
cases, overlapping sizes are set to 0 and trimming fractions are set to 20%. Spike-in
genes are shown in red.

Overlapping size

Effect of overlapping size on Sub-Sub normalization is shown in Figure 2.2. We fix

the sub-array size and trimming fraction to be 20× 20 and 20% respectively. Different

overlapping sizes (0, 5, 10, 15) are used for normalization. As shown, we found the

effect of the overlapping size on normalization is also small. Our recommendation is

half of the sub-array size. For example, it is 10 if sub-array size is 20×20. According to

22



6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

(A)

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

(B)

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

(C)

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

(D)

6 8 10 12 14

−
0.

2
0.

2
0.

4
0.

6

Figure 2.2: Effect of overlapping size on Sub-Sub normalization. M-A plots of Spike-in
data are shown after Sub-Sub normalization: (A) overlapping size is 0; (B) overlapping
size is 5; (C) overlapping size is 10; (D) overlapping size is 15. In all the cases, sub-
array sizes are set to 20× 20 and trimming fractions are set to 20%. Spike-in genes are
shown in red.

our experience, it can even be set to 0 (no overlapping between adjacent sub-arrays) to

speed up computation without obvious changing the normalization.

Trimming fraction

Effect of trimming fraction on Sub-Sub normalization is shown in Figure 2.3. A trim-

ming fraction ranging from 0 to 30% is used while sub-array size and overlapping size
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Figure 2.3: Effect of trimming fraction on Sub-Sub normalization. M-A plots of Spike-
in data are shown after Sub-Sub normalization:(A) trimming fraction is 0; (B) trimming
fraction is 10%; (C) trimming fraction is 20%; (D) trimming fraction is 30%. In all the
cases, sub-array sizes are set to 20 × 20 and overlapping sizes are set to 10. Spike-in
genes are shown in red.

are fix to 20 × 20 and 10, respectively. As can be seen in Figure 2.3, when the trim-

ming fraction is 0, an obvious nonlinear pattern can be observed in the M-A plot, which

gives a points cloud with a “banana” shape (Figure 2.3A). In this case, the LTS degener-

ates into an ordinary linear regression method, which is not robust to outliers any more.

As a consequence, accurate estimation of linear relations in each sub-array can not be

guaranteed. When we gradually increase the trimming fraction, the nonlinear pattern is

removed from the M-A plots(see 2.3B-D). The selection of trimming fraction should
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depend on which samples to be compared in the experiments and the quality of microar-

ray data. For an experiment with 20% differentiated genes, we should set a trimming

fraction larger than 20%. Again we need a trade off between robustness and accuracy

when selecting the trimming fraction. On one hand, to avoid break-down of LTS, we

prefer large trimming fractions. On the other hand, we want to keep as many probes as

possible to achieve accurate estimates of α and β. Without a priori, we can try different

trimming fractions and look for a stable solution. We recommend 50% to be the starting

value for the try.

In the Affymetrix Spike-in data set, the majority of genes have constant expression

levels across all the arrays. Trimming fraction is mainly used to protect the ill hybridized

probes rather than probes corresponding to differentially expressed genes. Thus a rela-

tively small trimming fraction of 20% is enough to achieve a good result.

It should be noted that the effects of the three parameters: sub-array size, overlap-

ping size and trimming fraction, are under separate investigation in above sections. Also

we have tried many combinations of these three parameters on several data sets. In some

reasonable range, the interaction between the parameters is negligible. Our results indi-

cate that the trimming fraction matters substantially to the normalization. The selection

of sub-array size is relatively flexible. Effective normalization could be expected for

a large range of sub-array size such as from 10 × 10 to 80 × 80. On the other hand,

dividing array into sub-arrays is required to deal with the spatial effect. As a matter of

fact, stratification by spatial neighborhood and selection of break down value in LTS do

contribute a great deal to the normalization. Overlapping size has a little contribution in

this data set.
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Figure 2.4: Box-plots of log transformed expression measurements for the 8 arrays from
Spike-in data set in probe and probe set level before and after Sub-Sub normalization.
(A) box-plot of probe intensities before normalization. (B) box-plot of probe intensi-
ties after Sub-Sub normalization. (C) box-plot of probe set expression values before
normalization. (B) box-plot of probe set expression values after Sub-Sub normalization.

2.5.3 Global assessment of normalization

Figure 2.4A and 2.4B show the box plots of log transformed probe intensities before and

after Sub-Sub normalization, respectively. Before normalization, the probe intensities

from the eight arrays are different with each other. For example, the probe intensities

from the 6th array are generally higher than those from other arrays. Obviously, this

is an artificial result caused by “obscuring ” variation between arrays, since we know

that expression levels of the majority of genes are the same on the eight arrays except

for the 14 spike-in genes. After Sub-Sub normalization, all the arrays have almost the
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same median of intensities. That is, the “obscuring” variation between arrays has been

significantly reduced so that expression levels after the normalization can be compared

between different arrays. The effectiveness of Sub-Sub normalization to reduce “obscur-

ing” normalization is also shown in the probe set level (see Figure 2.4C and 2.4D).

1.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.41.8 2.0 2.2 2.4
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(B)

Figure 2.5: Distribution of probe intensities on the 8 arrays from Spike-in data before
(A) and after (B) Sub-Sub normalization.

The distribution of probe intensities before and after Sub-Sub normalization for each

array are shown in Figure 2.5. The probe intensities from the eight arrays have different

distributions before normalization (see Figure 2.5A). Sub-Sub normalization results in

similar distributions for probe intensities from all arrays. Although the Sub-Sub normal-

ization doesn’t attempt to match the marginal distributions purposely as the “quantile”

normalization does, it does achieve similar marginal distributions between arrays.

The effectiveness of Sub-Sub normalization on the Spike-in data set is also revealed

by the M-A plots. Figure 2.6A and 2.6B show the M-A plots before and after the Sub-

Sub normalization, respectively. Sub-Sub normalization removes the non-linear pattern

seen in the M-A plot. After Sub-Sub normalization, the point cloud centers around the

horizontal M = 0, which is what we expect to achieve by normalization.
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Figure 2.6: M-A plots for the Spike-in data set before (A) and after (B) Sub-Sub nor-
malization.

2.5.4 Detection of spatial patterns

We then investigate the existence of spatial pattern. The HG-U95 chips have 640×640

spots on them. We divided each array into sub-arrays with a size of 20×20. We run

simple LTS regression on the target with respect to the reference for each sub-array.

This results in an intercept matrix and a slope matrix of size 32×32, representing the

spatial difference between target and reference in background and scale. We first take

Array M as the common reference. In Figure 2.7, the slope matrices of Array P and

M are shown in the subplots at top left and top right respectively. Their histograms

are shown in the subplots at bottom left and bottom right. Two quite different patterns

are observed. Similar phenomenon exists in patterns of α. The key observation is that

spatial patterns are array-specific and unpredictable to a great extent. This justifies the

need of adaptive normalization.
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Figure 2.7: The slope matrices of two arrays show different spatial patterns in scale.
The common reference is Array M. (A) Array P versus M; (B) Array N versus M. Their
histograms are shown at bottom in (C) and (D) correspondingly.

2.5.5 Robustness to large differentiation fraction

As we have mentioned, one of the motivations to design Sub-Sub normalization is to

deal with the differentiation of genes between samples. Sub-Sub normalization protects

substantial differentiation genes by selecting an appropriate trimming fraction in LTS.
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To test this, we generate several artificial data sets with relatively large fraction of differ-

entiation by perturbing the Affymetrix HG-U95 Spike-in data set. We randomly choose

20% genes and increase their corresponding probe intensities by n fold(n=2.5, 1.5, and

1.25) in the four arrays of the second group. We then run SUB-SUB normalization on

the perturbed data set with various trimming fractions. The results are shown in Figure

?? for four trimming fractions, 30%, 20%, 10%, and 0%. The normalization is satisfac-

tory when the trimming fraction is less than 20% (see Figure 2.8A and 2.8B). When the

trimming fraction is larger than 20%, the real differentiation fraction, Sub-Sub does not

achieve a good normalization as revealed by the ”banana” shaped point cloud in the M-

A plot (see Figure 2.8). Again, this suggests the importance of choosing an appropriate

trimming fraction for LTS.

We have also tried the other two perturbed Spike-in data set with 1.5 and 1.25 fold

up-regulation for 20% randomly choose genes. Similar results are obtained as shown in

Figure 2.9. These results indicate that Sub-Sub normalization is effective for data sets

with large differentiation fractions as long as an appropriate trimming fraction is chosen.

2.6 Evaluation of Sub-Sub on real data sets

2.6.1 Microarray data sets

Yeast sir24/wt data

The data set was introduced by Fabrizio et al. [FGB+05]. To study the function of Sir2

in yeast ageing process, RNA samples were extracted from sir24 and wild type strain

in duplication, and hybridized with Affymetrix YG-S98 chips. This leads to four arrays,

30



Figure 2.8: M-A plots for perturbed Spiked-in data set (n=2.5) after Sub-Sub normal-
ization. 20% randomly selected genes are artificially up-regulated by 2.5 fold in Array
Q, R, S and T. The differentially expressed genes are marked red, and un-differentially
expressed genes are in black. The trimming fraction in the subplots are (A) 30%; (B)
20%; (C) 10%; (D) 0%.

two corresponding to sir24 and the other two corresponding to wild type. The YG-

S98 chip has 534 × 534 spots on it. We will use this data set as an example of gene

differentiation.

Yeast technical replicates data

The data set was downloaded from Affymetrix web site as an sample data set [Aff].

It includes two technical replicates of YG-S98 arrays: Yeast-2-121501 and Yeast-2-

121502. Technical replicates are obtained by hybridizing the same RNA sample to
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Figure 2.9: M-A plots of perturbed spike-in data set (n=1.5 and n=1.25) after Sub-Sub
normalization. 20% randomly selected genes are artificially up-regulated by 1.5 fold (A
and B) and 1.25 fold (C and D) in Array Q,R,S and T. The trimming fractions are: (A)
0%; (B) 30%; (C) 0%; (D) 30%.

multiple arrays. The “obscuring” variations can only be introduced after hybridization.

So we expect no biological variation between technical replicates since they are from

exactly the same sample. Technical replicates are different from what are so called

biological replicates. The latter ones are hybridization results of different RNA samples

that are prepared separately from the same biological sample, i.g. a tumor sample from

a patient. Technical replicates enable us to compare the performance of normalization

methods by measuring the variation reduction.

Primate brain expression data

Expression profiles offer a way to study the difference between humans and their closest

evolutionary relatives. Unfortunately, gene chips are only available commercially for a
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limited number of species. For example, there is still no commercial gene chip for

chimpanzee. To measure the expression profiles for chimpanzees, we have to do cross

species hybridization, that is, hybridize chimpanzee RNA samples with human chips.

The Primate brain expression data is one of this type of data which is available from

http://email.eva.mpg.de/∼khaitovi/supplement1.html [EKK+02]. Two brain samples are

extracted from each of three humans, three chimpanzee and one orangutan. In what

follows we only show results on two human individuals (HUMAN 1 and HUMAN 2),

one chimpanzee (CHIMP. 1) , and the orangutan (ORANG). The mRNA expression

levels were measured by hybridizing them with the Affymetrix human chip HG-U95.

2.6.2 Results

Example of differentiation
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Figure 2.10: An example of gene differentiation. (A) Scatter plot of log transformed
expressions for probe sets in wild type versus those in sir24. (B) The corresponding
M-A plot.
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Unlike most of the other existing normalization methods, Sub-Sub does not assume

that the majority of genes are not differentially expressed. That is, Sub-Sub allow a

fraction of genes to be differentially expressed between arrays. In addition, the number

of up-regulated genes and the number of down-regulated genes are not assumed to be

equal. In section 2.5, we have shown the effectiveness of Sub-Sub to deal with data set

that has substantial differentiation fraction using the perturbed Affymetrix Spike-in data

set. In the perturbed Spike-in data, we simulate a situation in which a certain fraction

of genes are differentially expressed, while log ration of the other genes are close to 0.

Consequently, two clusters appears in the point cloud as shown in the M-A plot.

One may ask can this appear in a real microarray data set? The answer is“yes”.

As shown in Figure 2.10, Yeast sir24/wt data set provides us a good example. Fig-

ure 2.10A shows the scatter plot of log transformed expressions for probe sets in wild

type versus those in sir24. Obviously, there are two clusters that appear in the scat-

ter plot. The major cluster corresponds to genes that are not differentially expressed

in sir24 with respect to wild type. Whereas, the other cluster corresponds to differ-

entially expressed genes. These two clusters can be observed more easily in the M-A

plot as shown in Figure 2.10B. We investigate the gene cluster that is down-regulated in

sir24. It turns out that most of these genes are involved in the yeast pheromone path-

way [RNM+00, WD04]. Thus deletion of sir2 results in the repression of the pheromone

pathway. From another point of view, this example indicates that it is reasonable for

Sub-Sub normalization to protect differentially expressed genes and outliers using LTS.

Variation reduction by Sub-Sub normalization

Stratification is a statistical technique to reduce variation. Sub-array normalization can

be regarded as a way of stratification. We normalize the yeast array 2-121502 versus
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Figure 2.11: The lowess curves of |M | versus A values by various normalization meth-
ods. Gray: no normalization; black: sub-sub; red: quantiles; green: constant; purple:
contrasts; blue: invariant-set; orange: loess; cyan: qspline. In Sub-Sub, sub-array size,
overlapping size and trimming fraction are set to 20× 20, 10 and 20%, respectively.

2-121501 by various normalization methods available from “affy” package in Biocon-

ductor. Since the two arrays are technical replicates, the difference between them is

due to experimental variation. In the resulting M-A plots, we fit lowess [Cle79] curves

to the absolute values of M, or |M |. These curves measure the variation between the

two arrays after normalization, see Figure 2.11. The sub-array normalization achieves

the minimal variation. Since variation is reduced, signal to noise ratio is enhanced and

power of significance tests is increased.

Generally, a smaller sub-array size captures more spatial bias and therefore leads

to more variation reduction in Sub-Sub normalization. Figure 2.12 shows the effect of

sub-array size on variation reduction. As can be seen, with the decrease of sub-array

size, more variation reduction is achieved.
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Figure 2.12: Effect of sub-array size on variation reduction. Trimming fraction and
overlapping size are set to 20% and 0, respectively.

Trimming fraction is also important for variation reduction in Sub-Sub normaliza-

tion. On one hand, a trimming fraction must be large enough to protect the differentially

expressed genes and outliers in the data. On the other hand, larger trimming fraction

results in less number of probes left for estimation in LTS. Thus, we need to trade off

between bias and variation. Definitely, there is no differentiation between the yeast tech-

nical replicates. So a small trimming fraction should be used for Sub-Sub normalization.

As expected, the variation decreases gradually as the trimming fraction increase from

10% to 50% (see Figure 2.13). However, a non-zero trimming fraction is required to

protect the influence of outliers in the data. So as shown, if a trimming fraction of 0% is
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Figure 2.13: Effect of trimming fraction on variation reduction. Sub-array size and
overlapping size are set to 20× 20 and 10, respectively.

used, we do not achieve consistent variation reduction across the whole intensity range.

In the range with small intensities, the worst variation reduction is obtained.

Primate brain expression data

Compared to other primate brains such as chimpanzee and orangutan, a relatively high

percentage of genes are differentially expressed in human brains, and most of them

are up-regulated in human brains [CLZ+03, GG03]. Moreover, the chimpanzee and

orangutan samples are hybridized with human HG-U95 chips, so it is reasonable to

assume: if there were any measurement bias in primate mRNA expressions compared
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Figure 2.14: The densities of expression log-ratios between: (A) HUMAN 1 versus
ORANG.; (B) HUMAN 2 versus ORANG.; (C) HUMAN 1 versus CHIMP. 1; (D)
HUMAN 1 versus HUMAN 2. The results from SUB-SUB normalization (trimming
fraction is 20%) and quantile normalization are represented by dotted and solid line
respectively.

to humans, it would be downward bias. Figure 2.14 shows the density functions of log-

ratios of gene expressions for four cases: HUMAN 1 versus ORANG.; HUMAN 2 ver-

sus ORANG.; HUMAN 1 versus CHIMP. 1 and HUMAN 1 versus HUMAN 2. In Fig-

ure 2.14, the density curves of the normalized densities by SUB-SUB(trimming fraction

is 20%) and by quantile normalization are plotted in dotted and solid line respectively.

When comparing humans with primates, the distribution from the SUB-SUB method

shifts to the right than that from the quantile method. This is more obvious in the cases

of humans versus orangutan, which are more genetically distant from each other than

other cases do; see Figure 2.14A and Figure 2.14B. As expected, the distributions skew
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to the right and the long tails on the right might have a strong influence on the quantile

normalization, which aims to match marginal distributions from humans and primates

in a global fashion.
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Figure 2.15: M-A plot of HUMAN versus ORANG after normalization. The sub-array
size, overlapping size and trimming fraction are set to 20× 20, 10 and 30% for Sub-Sub
normalization, respectively.

However, in the cases of HUMAN 1 versus ORANG. and HUMAN 2 versus

ORANG., the modes corresponding to the quantile method are in the negative terri-

tory while the modes corresponding to SUB-SUB method are closer to zero. The results

from SUB-SUB normalization seems to be more reasonable. Furthermore, the differ-

ence in the case of HUMAN 1 versus HUMAN 2 is more distinct than that in the case

of HUMAN 1 versus CHIMP. 1; see the two subplots at the bottom in Figure 2.14. The

analysis in [EKK+02] also indicates that HUMAN 2 differs more from other human
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samples than the latter differ from the chimpanzee samples. We checked the M-A

plot of HUMAN2 versus ORANG after SUB-SUB normalization (see Figure 2.15), and

observed that HUMAN 2 has more up-regulated genes than down-regulated genes com-

pared to ORANG.

2.7 Discussion

2.7.1 External controls

In cDNA arrays, some designs use external RNA controls to monitor global messenger

RNA changes, [vKv+03]. In our view, external RNA controls play the role of undiffer-

entiated probe sets. To carry out local normalization, we need a quite large number of

external controls for each subgrid. In current Affymetrix arrays, this is not available.

2.7.2 Differentiation fraction

In many microarray experiments, the primary goal is to identify differentially expressed

genes. But the differentiation fraction may be quite different from one case to another.

Following are three cases in which a large fraction of genes may be differentially

expressed between two samples. First, in the study on the life span of yeast, we compare

expression profiles of a wild type strain with another such as sch94. The metabolism

in the knock-out strain is greatly reduced and this leads to life span extension [FPP+01].

Second, gene chips for some organisms are not available. And cross-species hybridiza-

tion is a useful strategy for comparative functional genomics. The comparison of brain

expressions of humans versus primates discussed earlier is one such example. Third,

to reduce the cost, some customized arrays are designed to include only probes of hun-

dreds of genes that are related to a specific biological pathway. SUB-SUB normalization
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uses LTS to identify a ”base” subset of probes for adjusting difference in background

and scale. In theory, the method can be applied to microarray experiments with differ-

entiation fractions as high as 50%. In addition, our method does not assume an equal

percentage of up- and down-regulated genes. In the mean time, LTS keeps the statistical

efficiency advantage of least squares.

2.7.3 Non-linear array transformation versus linear sub-array

transformation

To eliminate the non-linear phenomenon seen in M-A plots or Q-Q plots, methods such

as lowess, qspline and quantile normalization use non-linear transformation at the global

level [WJJ+02, BIApS03, YDL+02]. In comparison, we apply a local strategy in SUB-

SUB normalization. One array is split into sub-arrays and a simple linear transformation

is fitted for each sub-array. With an appropriate sub-array size and trimming fraction,

the nonlinear feature observed in M-A plots is removed by linear sub-array transforma-

tion to a great extent. We speculate that the nonlinear phenomenon is partially caused by

spatial variation. One simulation study also supports this hypothesis, but further inves-

tigation is required. Next we give one remark regarding nonlinearity. In normalization,

we adjust the intensities of a target array compared to those of a reference. Even though

the dye effect is a nonlinear function of spot intensities, a linear transformation may be

a good approximation as long as the majority of probe intensities from the target and

reference are in the same range and thus have similar nonlinear effect. Occasionally

when the amount of mRNA from two arrays are significantly different, slight nonlinear

pattern is observed even after sub-array normalization. To fix the problem, we can apply

global lowess after the sub-array normalization. Alternatively, to protect the substan-

tial differentiation, we can apply a global LTS normalization subject to a differentiation

fraction once more.
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2.7.4 Transformation

The variance stabilization technique was proposed in relation to normalization

[DHHR02, HHS+02]. We have tested SUB-SUB normalization on the log-scale of

probe intensities, but the result is not as good as that obtained on the original scale.

After normalization, a summarization procedure reports expression levels using the

probe intensities. we have tried the median polishing method [IBC+03] on the log-scale.

Alternatively, we can do a similar job on the original scale using MBEI [LW01b].

2.7.5 Usage of mis-match probes
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Figure 2.16: Histogram of percentages of MM probes in subsets associated with LTS.

Some studies suggested only using perfect-match probes in Affymetrix chips

[WI04]. We checked the contribution of mismatch probes and perfect match probes to

the subsets associated with LTS regressions from all sub-arrays. Figure 2.16 shows the

distribution of the percentage of mis-match probes in the subsets identified by LTS. Our
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result shows that mis-match probes contribute slightly more than perfect match probes

in LTS regression, mostly in the range 46-56%.

2.7.6 Diagnosis

The detection of bad arrays is a practical problem in the routine data analysis of microar-

rays. In comparison with the obvious physical damages such as bubbles and scratches,

subtle abnormalities in hybridization, washing and optical noise are more difficult to

detect. By checking the values of α and β in LTS across sub-arrays, we can detect bad

areas on one array and save information from the rest of the areas. Consequently, we

can report partial hybridization result instead of throwing away an entire array.

2.8 Improve performance of Sub-Sub by PLTS

2.8.1 Limitation of LTS

LTS is the basis of Sub-Sub normalization. In each sub-array, LTS is performed to

estimate the normalization relation between a target and a reference array. However,

LTS has some drawbacks in nature when used for normalization. Basically, LTS is

a robust method to solve linear regression problems. For a simple linear regression

model:y = α + βx + ε with n observation (xi, yi), if we denote the squares residuals in

an ascending order by |r2(α, β) (1) ≤ |r2(α, β) (2) ≤ · · · |r2(α, β) (n). Then the LTS

estimation of coverage h, α̂, β̂, are obtained by

min
α,β

bnhc∑
i=1

|r2(α, β)|(i).

As shown, LTS estimates the regression coefficients based only on data points with the

smallest residuals, so it is robust to the outliers. That is, it achieves a more accurate
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estimation of the linear relation between x and y, when there are some outliers included

in the data.

In an ordinary LTS, vertical offsets are used: r(α, β) = yi−α−βxi. The vertical off-

set only takes the errors from response variable y into account. Consequently, extreme

values in xis and yis are not equally treated. Extreme values in xis are ignored in some

sense. But for a normalization problem, the selection of reference is often arbitrary. It is

more reasonable to treat the reference and the target array equally. To do this, we need to

take into errors from both x and y into account. To address this issue, we designed a new

method called PLTS (Perpendicular Least Trimmed Squares). The new method is based

on the algorithm proposed by Li [Li04] but with some revisions. In PLTS, the vertical

offset is replaced by perpendicular offset: r(α, β) = (yi−α−βxi)/
√

1 + β2. Note that

the same formula is used by Total Least Squares in a error-in-variables model [vHL02].

The vertical offset measures the perpendicular distance from a data point (xi, yi) to the

regression line, and therefore takes the errors from both x and y into account (see Fig-

ure 2.17).

Figure 2.17: Comparison of vertical offset and perpendicular offset. (A)vertical offset
used in LTS; (B)perpendicular offset used in PLTS.
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2.8.2 LTS versus PLTS

Figure 2.18: PLTS is symmetric with respect to x and y. (A)LTS; (B)PLTS. In (A), the
magenta line and cyan line are the best fitted lines of regression y ∼ x and x ∼ y,
respectively. In (B), outliers are marked as blue points. For both LTS and PLTS, a
trimming fraction of 30% is used.

We developed an algorithm to solve PLTS on the basis of Li’s work [Li04]. One of

the key properties of PLTS is that it is symmetric with respect to x and y. To illustrate

this property, we apply both LTS and PLTS with the same trimming fraction (30%) on a

data with 200 observations. As shown in Figure 2.18, for LTS, two different regression

lines are obtained. One is for regression of y on x, the other is for regression of x

on y. But for PLTS, the same regression line is achieved no matter x or y is used

as the response variable. This property is useful when PLTS is applied to Sub-Sub

normalization. By using PLTS, we achieve the same normalization no matter which

array is chosen as the reference. Of more importance, PLTS takes outliers from both

target and reference array into account, a more accurate estimation would be expected.

To test whether PLTS achieve a more accurate estimation of linear relations between

variables than LTS, we simulate a data with of 1000 in size using the following pro-

cedure. First, we generate a vector X = [1, 2, · · · , 1000]. Then we generate another
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Figure 2.19: Comparison of LTS with PLTS using simulated data with errors in both x
and y. (A) LTS; (B) PLTS. Magenta stars mark the data points in the subset. Blue dots
indicate the identified outliers.
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Figure 2.20: PLTS achieves more variation reduction than LTS in Sub-Sub normaliza-
tion. Sub-array size and overlapping size are set to 20× 20 and 10, respectively.
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vector Y, where Yi = 100 + 0.8Xi for all i = 1, 2, · · · , 1000. Finally, we introduce

errors for both X and Y by adding a random number εx and εy to each Xi and Yi,

where εx ∼ N(0, 200) and εy ∼ N(0, 200). This procedure generates 1000 observa-

tions (xy, yi) with the underlying relation Y = 100 + 0.8X . Figure 2.19A and Fig-

ure 2.19B show the regression lines estimated by LTS and PLTS respectively using the

same trimming fraction: 20%. As can be seen, the regression line estimated by LTS is

y = 279.45 + 0.4970x. It deviate from the real relation between x and y. Those data

points with larger values in vertical direction are more likely to be identified as outliers,

which results in a regression line with a slope smaller than the real value. Whereas,

PLTS achieves a regression line: y = 109.63 + 0.8027x. Both the slope and intercept of

the regression line are close to the real ones.

2.8.3 Application of PLTS on Sub-Sub

If PLTS is able to capture the relations between two variables more accurately, we would

expect more variation reduction after Sub-Sub normalization for the Yeast technical

replicates data set. We compare the results of Sub-Sub normalization using LTS and

PLTS. As expected, PLTS does reduce more variation between the replicates than LTS

with different trimming fractions (see Figure 2.20). For a larger trimming fraction, the

improvement in performance is more significant.
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Chapter 3

Identification of perturbed genes

between time courses

Microarray technologies have been applied to a wide range of biological studies includ-

ing large-scale linkage analysis, association, and copy number studies et al. Among

all these applications, the most frequently used application is to detect differentially

expressed genes between control and treatment/disease samples. For example, to under-

stand the mechanisms of carcinogenesis, we can compare the gene expressions in tumors

with those in the normal tissues to identify the differentially expressed genes. Differen-

tial expression between treatment and control condition can be investigated from both a

static and temporal viewpoint. In a static experiment design, snapshots of gene expres-

sion levels are taken without considering the temporal effect. Whereas in a temporal

experiment design, which is also called a time course design, the gene expression across

several time points are measured. In this chapter, we introduce a novel method, called

MARD (Mean Absolute Rank Difference) analysis, which is developed to identify dif-

ferentially expressed genes between treatment and control time courses.

3.1 Introduction

Microarray techniques have been widely applied to identify genes that have different

expression under various biological conditions. In many cases, we regard one condition
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as treatment and the other one as control, which leads to the definition of treatment-

control experiment design. Differential expression between treatment and control con-

dition can be investigated from a static or a temporal viewpoint. In a static experiment

design, snapshots of gene expression levels are taken without considering the tempo-

ral effect. While in a temporal experiment design the gene expression across several

time points are measured. Since the regulation of gene expression is a dynamic process,

usually a temporal design provides more biological information than a static design.

It has been shown that most available approaches for the static data are not directly

applicable for the time-course data [BJ04, SXL+05]. Existing data analysis meth-

ods for the time course data often focus on identifying special expression patterns

across the time points [WKS04]. For example, clustering analysis is often per-

formed on a time course data to identify gene clusters with interesting expression pat-

terns [ESBB98, LL03]. On the other hand, several approaches have been proposed

to compare different time courses and identify differentially expressed genes between

them. If the sampling time points can be “aligned” between the treatment and con-

trol time courses, we can identify differentially expressed genes by direct comparison

of the gene expression patterns under the two conditions. Available methods include

the fold-change analysis [YSG+02], order-restricted statistics [PLL+03], the analysis of

variance [PYL+03], and one-sample multivariate empirical Bayes statistic [TpS06].

However, two difficulties exist in the analysis of microarray data with tempo-

ral design. First, the sampling time points is generally different from one study to

another [BJ04]. As a consequence, it is hard to integrate data from different studies. Sec-

ond, a treatment may alter the “life-clock” pace of an organism. For example, it has been

reported that the knockout of gene sch9 extends yeast life-span by three folds [FPP+01].

In this case it is difficult to align the time-scales of individuals under treatment and
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control conditions. When the sampling time points can not be “aligned” between treat-

ment and control, various interpolation techniques are often used as a preprocessing step

before the direct comparison. For example, Bar-Joseph et al. [BJGS+03] proposed to

represent gene expression patterns in treatment and control by B-spline curves and then

compute a global difference measure between these two curves. Recently, Storey et

al. [SXL+05] proposed to represent gene expression trajectories by a natural cubic spline

and then use goodness-of-fit test for differentially expressed genes detection. However,

in either situation, the time points of the two time courses must be “aligned”.

In this chapter, we propose a novel method to identify differentially expressed genes

between control and treatment time courses which does not require “aligned” time points

in the two time courses. The method is proposed for the following considerations. (1)

The relationships between genes can be estimated from microarray time course data.

Functionally associated genes tend to have similar expression patterns. So we can con-

struct a gene relationship network out of a microarray data set, where each node is a gene

and each edge links two genes with similar expression patterns. Two gene relationship

networks can be constructed from control and treatment time courses which may be dif-

ferent from each other. (2) Due to the robustness of cell system [LLYLT04, ASBL99],

we may expect the gene relationship network to be also robust. Namely, we may expect

that the majority of gene relationships are only marginally affected by a nonlethal treat-

ment. Otherwise, dramatic change in the whole relationship network may cause lethal

effect. (3) If a gene is substantially affected by a treatment, we would expect a dramatic

change of the gene between the two relationship networks constructed from control and

treatment time courses. So we estimate the effect of the treatment on a gene indirectly

by investigating the gene’s neighborhood change between the two relationship networks

constructed from the treatment and control time courses. Namely, if the neighbors of

a gene in the two networks change dramatically, we regard this gene as substantially
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affected gene by the treatment. Based on these three considerations, we design a statis-

tic called MARD (Mean Absolute Rank Difference) to measure the effect of a treatment

on a gene. Since we compare the two constructed relationship networks instead of

directly comparing the expression patterns, the problem of sampling scheme differences

between treatment and control is not an issue for our approach.

3.2 Available approaches

3.2.1 Static analysis based methods

Many approaches have been introduced to identify genes that are differentially

expressed between two experiments with a static expression design. However they can

not be applied directly to compare time courses , due to differences in sampling rate

and variation in the timing of biological processes [BJGS+03]. Previously proposed

approaches for identifying differentially expressed genes between time courses essen-

tially applied static analysis methods. These ad hoc methods are not generally appli-

cable, or only applicable for a specific data set. These methods include cluster anal-

ysis [ZSV+00], generalized singular value decomposition [ABB03], point-wise com-

parison [NRS+02, HLM+01], and customer-tailored models [XOZ02]. Although these

approaches have achieved some success, they suffer from many problems. Cluster anal-

ysis identifies gene clusters in which a large portion of genes change in expression.

But it fails to detect differentially expressed genes that belong to clusters for which

most genes do not change [ZSV+00]. Generalized singular value decomposition can

be used to detect difference between various sets of gene sets but it is not applicable to

comparing individual genes. Moreover, this method requires that the two time courses

being compared have the same number of time points , which is not the case in gen-

eral [ABB03]. Direct point-wise comparison between samples in two time courses does
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not take the dynamic nature of the time course experiments into account. Further more,

it can not distinguish the real gene expression changes from the random noises. In

addition, for two time courses that have different timing scales, direct comparison is

impossible. Custom-tailored models require significant assumptions about he shape of

the expression profiles being compared, e.g. following linear or quadratic models, and

therefore does not provide a general solution to time course comparisons [XOZ02]. In

most cases, it is hard to justify using a highly specific model. Even if some genes are

known to change in a certain way over time, e.g. a sinusoidal model foe the cell cycle

time courses, using such a specific model for the shape of expression files may result

in failure of detecting changes in many genes that are differentially expressed but not

behave in the way that is assumed by the model [XOZ02].

3.2.2 ANOVA method

Park et al. provided a detail description about application of statistical tests for identi-

fying differentially expressed genes in time course microarray experiments [PYL+03].

Two-way ANOVA model is applied to detect differentially expressed genes between two

time courses with aligned time points, where each time course is obtained from a group

of samples (treated or control).

Let yikln represent the expression level of gene n in replication l from group i at

time k. The following models, M1 and M2, are considered for data set with and without

replications, respectively.

M1 : yikln = µn + αin + βkn + (αβ)ikn + εikln,

M2 : yikln = µn + αin + βkn + εikln,

where i = 1, 2; k = 1, · · · , K; l = 1, · · · , L; and n = 1, · · · , N . The gene effects

µn capture the overall mean expression value for gene n across the arrays. The αin

terms account for gene specific group effect representing overall differences between
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the treated and control group. The βikn account for time effects that capture differences

in the overall expression in the samples from different time points. The (αβ)ikn terms

account for the interaction effect between group and time. Note that the interaction term

can not be estimated if there is no replication in a experiment. To identify genes that are

differentaily expressed between treatment and control groups, we are interested in genes

that show significant interaction effect (αβ)ikn in model M1 or significant group effect

αin in model M2. Testing significance of these effects can be achieved by the calculation

of F-statistics for each gene.

3.2.3 Continuous representation based method

Another method proposed by Bar et al in 2003 is based on the continuous representation

of time courses [BJGS+03]. Gene expression profiles in both the treatment and control

time courses are represented as continuous curves using B-splines. To address the time

shift and time scale problems between the two time courses, liner warping function is

used to obtain an optimal alignment by adjusting shifting and stretching parameters to

minimize a global error function [BJGG+03]. For a given gene, its expression profiles

in the control and treatment time course are denoted as C1 and C2, respectively. Then

the problem of detecting expression difference of the gene in the two time courses has

been converted into the following hypothesis testing problem:

H0: C2 is a noisy realization of C1,

H1: C1 and C2 are independent.

The test is performed using the log likelihood ratio statistics written as

2 log
p(C2|C1, H1)

p(C2|C1, H0)
.
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The log likelihood ratio statistics measures the ability of the hypothesis to explain the

difference between the two curves.

To compute p(C2|C1, H0), the noise in the individual measurements is assumed to be

normally distributed with mean 0 and variance σ2. Denote the actual expression values

measured in the control and treatment experiment as Y1 and Y2, respectively. Due to

the difference in sampling rate and temporal expression variations, Y1 and Y2 can not

be compared directly. Therefore, the spline curve is sampled at the time points in the

control experiment to obtain a set of expression values, denoted as Y’2. Now Y’2 is

comparable to Y1 because they have the same sampling rate. Thus, we can set

p(C2|C1, H1) = p(Y ′
2 |σ2, H1) =

1

(2πσ2)m/2
.

To compute p(C2|C1, H1), the definition of global difference between two expres-

sion curves C1 and C2 is introduced as

e2 = D(C1, C2) =

∫ ve

vs
[C2(t)− C1(t)]

2dt

ve − vs

,

where vs and ve are the start and end of the interval in which the two curves can be com-

pared. Then we can set p(C2|C1, H1) = p(e2|Y1, σ
2, H0). To calculate p(e2|Y1, σ

2, H0),

one replaces it with the maximum-likelihood assignment of p(e2|Y1, σ
2, H0), which can

be computed by finding a curve C with a global distance of (e2) from C1 that maximizes

the probability of C being a noisy realization of C1. That is, only a global error value e2

that can not be adequately explained by the best (maximum-likelihood) curve C will be

considered significant.
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3.2.4 EDGE method

Storey et al. introduced the method called EDGE (extraction of differential gene expres-

sion) in 2005 [SXL+05]. Under the null hypothesis, the method assumed that there is

no differentially expressed genes between the treatment and control time courses. That

is, the treated and control groups have the same average expression profile of all the

genes. Therefore, we can use a single cubic curve to fit the combined group. Under

alternative hypothesis, the method fits a cubic curves in each group seperately. Fitted

values under the null and alternative hypothesis are calculated for each observed value.

The residuals of the fitting are then obtained by subtracting the fitted values from the

observed values. Denoting the sum of squares of the residuals obtained from the null

hypothesis and alternative hypothesis as SS0
i and SS1

i , respectively, a statistic for gene i

is constructed as

Fi =
SS0

i − SS1
i

SS1
i

.

This statistic compares the goodness of fit of the model under the null hypothesis with

that under the alternative hypothesis. It is a quantification of evidence for differential

expression between the treatment and control time courses. The larger it is the more

differentially expressed the gene appears to be.

3.3 Description of MARD analysis

In this thesis we mainly focus on two-channel cDNA arrays, but the main idea can be

extended to other types of arrays.

Given a data set from treatment-control time course design, suppose that it mea-

sures the expression levels of n genes at K1 time points/samples under control con-

dition and K2 time points/samples under treatment condition. Let’s denote the gene
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expression levels under the control and treatment condition as Y (1) =
(
y

(1)
gk

)
n×K1

and

Y (2) =
(
y

(2)
gk

)
n×K2

correspondingly. In both matrices, each row is the expression lev-

els of a gene across different time points while each column stands for all the n genes’

expression levels at one specific time point.

First, under each condition (treatment or control) and for each gene i, we can define

the relationships between gene i and all the other genes by calculating the distance

d(i, j) between their expression patterns. Several metrics can be used to describe this

distance including the Euclidean distance, Pearson correlation coefficient and etc.. Then

for gene i, we obtain two distance vectors d(1) = (d
(1)
1 , · · · , d

(1)
i−1, d

(1)
i+1, · · · , d

(1)
n ) and

d(2) = (d
(2)
1 , · · · , d

(2)
i−1, d

(2)
i+1, · · · , d

(2)
n ), where d

(1)
j and d

(2)
j are the distances between the

expression patterns of gene i and gene j under the control condition and the treatment

condition respectively.

Second, for each distance vector under each condition, the ranks of all the genes

j 6= i are calculated and denoted by r(1) = (r
(1)
1 , · · · , r

(1)
i−1, r

(1)
i+1, · · · , r

(1)
n ) and r(2) =

(r
(2)
1 , · · · , r

(2)
i−1, r

(2)
i+1, · · · ,

r
(2)
n ), where r1

j and r2
j are the rank of d

(1)
j in d(1) and d

(2)
j in d(2) respectively. Then the

change of the relationships between gene i and gene j under the two conditions can be

described as

4rj = |r(1)
j − r

(2)
j |

where j = 1, 2, · · · , n and j 6= i.

Thirdly, we define a “neighborhood” for gene i because the change of gene i under

the two conditions should not be described by the change in the relationships between

it and all the other genes. Two types of genes are included in the “neighborhood”. The

first type includes those genes that have very similar expression profiles with gene i

because these genes tend to be functionally associated with gene i. However, if we only
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consider this type of genes, when all the neighbors of gene i are perturbed by the treat-

ment to the same level, we would not see significant change in the “neighborhood” of

gene i although gene i does change under the two conditions. To make up this prob-

lem, we include the second type of genes into the “neighborhood” of gene i which have

very large distance with gene i under either condition. These distant genes usually con-

sists of genes from various function categories and may have no biological association

with gene i. When all the neighbor genes are perturbed at the same level, these distant

genes will have large change in their relationships with gene i because most of them

may not be perturbed together with gene i or may be perturbed in very different way

with gene i. With all these considerations, we have the following three definitions of

“neighborhood”:

1. q-proximal neighborhood: G
(k)
1 (q) = {j : d

(k)
j ≤ d(k)(q)},

2. q-distal neighborhood: G
(k)
2 (q) = {j : d

(k)
j ≥ d(k)(1− q)},

3. q-two-end neighborhood: G
(k)
3 (q) = G

(k)
1 (q)

⋃
G

(k)
2 (q),

where d(k)(q) is the q-th lower quantile of the distance vector d(k) and k = 1, 2 for the

two conditions. So q described how many genes are included in the “neighborhood” of

one gene. Details about how to determine q can be found in “Discussion”.

Finally, given the value of q and following one definition of “neighborhood”, the

Mean of Absolute Rank Difference(MARD) for gene i is defined as

Mi(q) =

∑
j∈G(q)4rj

#G(q)

where G(q) = G
(1)
l (q)

⋃
G

(2)
l (q) is the union of the two sets of neighborhood genes

of gene i under control and treatment condition, l = 1, 2, 3 corresponding to the three

definitions of “neighborhood” and #G(q) stands for the total number of genes inside
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G(q). So for any given gene i and value of q, we can calculate a MARD for each of the

three definitions of “neighborhood”.

Having the MARD values of all the genes, we can rank the genes in descending

order of their MARD values. The larger the MARD value of a gene is, the larger change

the gene has under the treatment and control conditions.

In the next two sections, we will test our approach using two treatment-control time-

course microarray data sets. In the first data set, time courses of gene expression in

response to Ca2+ were measured with and without the FK506 treatment in budding

yeast [YSG+02]. In both time courses, gene expression levels were measured at four

well matched time points after Ca2+ addition: 15, 30, 45 and 60 min. Therefore we refer

to this data set as the aligned time course data set. The other data set provides the gene

expression profiles across the cell cycle of wild-type budding yeast [SSZ+98] and the

4fkh14fkh2 double mutant [ZSV+00]. The two time courses were measured inde-

pendently by two research groups and different sampling schemes were used. Therefore

it’s difficult to directly compare the two time courses. We refer to this data set as the

unaligned time-course.

3.4 Evaluation of MARD on aligned time course data

3.4.1 Ca2+ Response w/o FK506 Inhibition Data

Calcineurin is a Ca2+/ calmodulin-dependent protein phosphatase. It is activated by spe-

cific environmental conditions, including exposure to Ca2+ or Na+, and then induces

gene expression by regulating the activity of the transcription factor Crz1p/Tcn1p. The

effects of Ca2+ and Na+ can be counteracted by FK506, which is an inhibitor of the cal-

cineurin protein, thereby shutting down the entire signaling pathway (see Figure 3.1). To

screen for calcineurin-dependent genes regulated by Ca2+, Yoshimoto et al. [YSG+02]
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Figure 3.1: Calcineurin/Crz1p signaling pathway in S. cerevisiae.

performed four groups of cDNA microarray: (1) Ca2+ time course, (2) Ca2+ + FK506

time course, (3) Ca2+ +FK506/ Ca2+, and (4) 4crz1/CRZ1: Ca2+. In experiment (1)

and (2), yeast samples were collected at t =15, 30, 45 and 60 min after being exposed

to Ca2+ and Ca2++FK506 separately, and were compared with sample collected at t

=0. In experiment (3), direct comparison was made between samples collected from the

FK506-treated and control samples at 15 and 30 min after Ca2+ addition. In experiment

(4), direct comparison was made between samples collected from wild type and 4crz1

strain at 15 and 30 min after Ca2+ addition. The authors identified 153 calcineurin-

dependent genes activated by Ca2+ based on microarray data from all the four experi-

ments.

Our aim is to identify the genes significantly perturbed by the inhibition of cal-

cineurin with FK506. Since FK506 blocks the calcineurin/Crz1p signaling pathway, we

would expect that the genes directly related to this pathway are more severely perturbed

than other genes. According to our approach, the degree of perturbation of a gene is
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measured by its neighborhood-change between the treatment and control time-course

experiments. We only use the data from experiment (1) and experiment (2) and regard

Ca2++FK506 time course as treatment and Ca2+ time course as control. Totally there

are about 6,000 genes whose expression levels were measured in the two time courses.

We filter out genes with missing values in either time course after which 5052 genes left.

Since genes with constant expression levels across the time points in both time courses

are of no interest, we remove 20% constantly expressed genes with the smallest varia-

tion across all the time points in the two time courses. For the remaining 4042 genes, we

apply the MARD analysis (two-end neighborhood with an informative fraction q=1% in

this paper, see ”Discussion” for determination of q). Note here only genes activated by

Ca2+ are of interest, we use ratios rather than log transformed ratios as the expression

measurements to lower the MARD value repressed genes. Detail explanation will be

given in ”Discussion”.

3.4.2 Identification of Perturbed Genes

We calculated the MARD values for all the 4042 genes and the distribution of them

is shown in Figure 3.2. Biologically speaking, after the inhibition of calcineurin by

FK506, we would expect dramatic neighborhood changes for genes that are directly

related to Calcineurin/Crz1p signaling pathway. Therefore these genes are expected to

have high MARD values. On the other hand, house-keeping genes, which are essential

for cell survival, tend to be less severely affected by any perturbation, since significant

change in the activities of these genes may be lethal to Yeast. Consequently, these

house-keeping genes should have lower MARD values. As shown in Fig. ??A, the

histogram of MARD shows a notable heavy tail on the right-hand side and a small peak

on the left-hand side, which seem to be the calcineurin/ Crz1p pathway related genes

and house-keeping genes, respectively. We investigate those genes with small MARD
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Figure 3.2: Distribution of the MARD values (informative fraction q=1%) of the 4042
genes in the Ca2+ Response w/o FK506 Inhibition Data. Threshold at the vertical dash
line result in 142 genes.

values (on the left hand), it turns out that most of them are housekeeping genes, such as

ribosomal protein genes. Certainly, those genes with large MARD values (on the right

side) are more of interest. We validate their association with calcineurin/ Crz1p pathway

through comparing with previous studies [YSG+02, Cye03].

Table 3.1 lists the top 40 substantially perturbed genes in the Ca2+ response w/o

FK506 inhibition data. As shown, most of these genes identified by MARD analysis

have also been reported as calcineurin dependent genes by Yoshimoto et al. [YSG+02].

For example, PMC1, the vacuolar Ca2+ ATPase involved in depleting cytosol of Ca2+

ions, identified by both MARD analysis and Yoshimoto et al. Previous study shows that

PMC1 prevents growth inhibition by activation of calcineurin in the presence of elevated

concentrations of Ca2+ [CF94]. Without FK506 treatment, expression of Pmc1 gene
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Table 3.1: The top 40 substantially perturbed genes in response to FK506 treatment.
The JBC column indicates whether a gene was also reported by Yoshimoto et al.

are up-regulated by at most 7-fold in response to Ca2+. However, when the activity

of calcineurin is inhibited by FK506, the gene expression of Pmc1 becomes insensitive
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to high concentration of Ca2+. Therefore, our result implies that the transcriptional

regulation of Pmc1 is dependent on the activity of the Ca2+/Calcineurin pathway, which

suggests a positive feedback in this pathway.

3.4.3 Consistency with Previous Study

Figure 3.3: The ranks of MARD values for genes identified by previous studies
in aligned data. Bars below the thick line are genes identified by Yoshimoto et
al. [YSG+02]; Bars above the line are genes with known functions [Cye03].

We checked the consistency of our identified genes with those identified as differ-

entially expressed in Yoshimoto et al [YSG+02]. Yoshimoto et al applied a two-step

analysis to identify calcineurin dependent genes activated by Ca2+. First, they selected

934 Ca2+-activated genes that were induced more than 2-fold at either 15 or 30 min after
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Ca2+ addition in experiment(1). Second, they assessed the extent to which the expres-

sion of each of these genes was reduced by calcineurin inhibition by direct compari-

son of FK506-treated and non FK506-treated cells exposed to Ca2+ in experiment(3).

Genes identified by this analysis are based on direct ratio measurements(“Ca2+ addition

15 or 30 min” versus “Ca2+ addition 0 min” and “FK506-treated” versus “non FK506-

treated”) in both steps and thereby are of high confidence. However, some calcineurin

dependent Ca2+ activated genes may be missing, because: (1) They didn’t take into

account the genes that activated by Ca2+ only at 45 or 60 min (2) The arbitrarily deter-

mined 2-fold threshold may filter out some interested genes. Our MARD analysis aims

to find the genes that were significantly perturbed in terms of neighborhood by FK506

treatment. We only consider the two time courses in experiments (1) and (2).

Despite the differences between our method and the approach in Yoshimoto et al, the

two sets of identified genes are highly consistent with each other. Yoshimoto et al iden-

tified 153 calcineurin dependent Ca2+ activated genes, among which 111 are present

in our data set (4042 genes included in total). To make a fair comparison, we select

the top 111 genes with the highest MARD values as listed in supplementary Table. 1.

Among these 111 genes, 63 genes are also identified by Yoshimoto et al with a p-value

of 5.7× 10−77. The consistency of our result with that of Yoshimoto et al is better illus-

trated in Figure 3.3. Most of the genes contain the Crz1p binding motif in their promoter

regions, suggesting that they were directly regulated by Crz1p. As can be seen from Fig-

ure 3.3, genes with higher MARD values are more likely to be reported as calcineurin

dependent Ca2+ activated genes in [YSG+02]. Specifically, all the top 27 genes with

highest MARD values are among the 153 genes identified by Yoshimoto et al. More

interestingly, we found that crz1 itself is significantly perturbed by FK506 according

to our result (with rank of 95) while it is not identified as calcineurin-dependent gene

by Yoshimoto et al. It turns out that crz1 gene encodes an auto-regulated transcription
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factor, i.e., it regulates the transcription of itself (personal communication with Martha

Cyert, Stanford University).

We also apply two-way ANOVA and EDGE analysis for the data [PYL+03,

SXL+05]. The two-way ANOVA analysis results in 167 genes whose expressions are

significantly different between the FK506 treated and non-FK506 treated time courses

with a significance level α = 0.01. Among these genes only 6 fall into the 153 genes

identified by Yoshimoto et al. If we reduce the significance level to 0.05, 783 genes are

identified, among which 54 are also within the 153 genes. However, the EDGE program

results in no differentially expressed genes between the two time courses with a false

discovery rate less than 10%. This may be caused by the lack of replicates or the small

number of time points in the experiment.

3.4.4 Consistency with Direct Comparison

Because the sampling time points are well matched between the treatment and control

in this data set, it is possible to directly calculate the gene expression profile changes

between treatment and control. Here, we would expect the neighborhood change of

a gene to be consistent with its expression pattern change for the following reasons:

(1) the biology system is robust [LLYLT04, ASBL99], only a small fraction of genes

have significant expression changes in response to a nonlethal perturbation; (2) we use

Euclidean distance to measure the neighborhood of genes. On the other hand, since

our approach explicitly uses more information about the gene-gene relationship than

direct comparison of gene expression patterns, some differences are also expected. The

change of gene expression patterns in treatment and control is defined as the normalized

Euclidean distance:

L(Y (1)
g , Y (2)

g ) =
‖ Y

(1)
g − Y

(2)
g ‖

‖ Y
(1)
g ‖ + ‖ Y

(2)
g ‖

(3.1)
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Figure 3.4: Consistency of MARD value with normalized Euclidean distance. The iden-
tified genes in [YSG+02] are marked as black stars.

where Y
(1)
g , Y

(2)
g are the two time courses of gene g under control and treatment condi-

tions respectively and ‖ · ‖ is the L2 norm in this study.

We plot the MARD value of each gene versus the expression pattern change for each

gene in Figure 3.4. As we can see from the plot, genes with higher MARD values tend to

have larger expression pattern change in treatment versus control time course. The cor-

relation coefficient between the MARD values and the normalized Euclidean distances

of all the genes is 0.844. Furthermore, most of the genes identified by Yoshimoto et al.

have higher MARD values than the normalized Euclidean distances. This indicates that

the MARD-score based analysis has a higher discriminant power.
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Figure 3.5: Relationship between MARD values (q=1%) and lethality in aligned data.

3.4.5 Essentiality and MARD

Due to the robustness of a biological system, we would expect small neighborhood

changes in response to a perturbation for genes that are essential for cell survival. There-

fore, we studied the relationship between the MARD value and essentiality of genes.

Systematic gene deletion experiments have been performed in yeast [WSA+99]. In

total, 5860 yeast genes are deleted and 1117 (19%) of them are identified as essential

genes which means that single deletion of these 1117 genes is lethal for cells grow in

YPD medium.

We rank the MARD values for all the 4042 genes and calculate the lethality rate

using genes ranked from i to i + 100 for different i = 1, 10, 20, · · · . The lethality rate

is defined as the fraction of essential genes in the gene set. We plot the MARD values

against the resulting lethality rate for each gene set in Figure 3.5. As shown in the figure,
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the lethality rate decreases from 56% to 5% with the increase of MARD values. This

is reasonable because the lethality rate describes how essential the genes in the gene set

are to the organism. If most of the genes inside a gene set are essential, the perturbation

by the treatment on them should be relatively small because significant perturbation on

them may be lethal to the organism. Now we have smaller MARD values for more

essential gene set. This means that our MARD statistics is a good measure of the effect

of the treatment on each gene. Since our method actually measures the change in the

neighborhood of each gene, this also support our rationale that genes, which are more

severely affected by a treatment, tend to have larger neighborhood changes and thereby a

higher MARD values. In addition, these results also show that gene relationship network

is robust, because essential genes that play important roles tend to be less affected by a

treatment.

3.5 Evaluation of MARD on un-aligned time course

data

3.5.1 The wt/4fkh14fkh2 cell cycle data

Fkh1 and Fkh2 are two yeast transcription factors involved in cell cycle regulation.

Deletion of each of them may cause mis-regulation of some genes, especially cell-cycle

related genes. Spellman et al. performed a time-course experiment to identify cell-

cycle regulated genes in wild type yeast [SSZ+98]. Zhu et al. performed another time-

course experiment in which fkh1 and fkh2 were knocked-out [ZSV+00]. Two clusters

of genes (CLB2 and SIC1) that show different expression patterns in the4fkh14fkh2

mutant were identified as Fkh1 or Fkh2 dependent genes by Zhu et al. Since the two

time course data sets have different sampling schemes, the expression patterns of genes

68



in them can not be directly compared. Bar-Joseph et al. identified 30 cell-cycle genes

and 22 non-cycling genes as differentially expressed by representing expression patterns

of genes by function curves and comparing directly the function curves [BJGS+03].

3.5.2 Identification of perturbed genes

Figure 3.6: MARD analysis of the un-aligned data (the wt/4fkh14fkh2 cell cycle
data). (A) distribution of the MARD value (informative fraction q=1%) of the 5525
genes. (B) Relationship between MARD value and lethality.

After filtering out the genes with more than one missing values, we calculate MARD

values (two-end neighborhood with an informative fraction q=1%) for the remaining

5525 genes to identify genes significantly perturbed by4fkh14fkh2 knockout. In this

data set we use log transformed ratios as the expression measurements instead of using

the ratios directly. The reason for doing this can be found in Discussion. The distribution

of MARD values of all the 5525 genes is shown in Figure 3.6A. We selected the top

100 genes with the highest MARD values which are listed in supplementary Table. 2.

Among these 100 genes, 41 genes are cell-cycle related genes according to the result

from Spellman et al. (p − V alue = 4.9 × 10−14). While comparing these 100 genes
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with the results by Bar-Joseph et al. [BJGS+03], 13 genes show up in their top 30 cycling

genes and 9 genes show up in their top 22 non-cycling genes (p−V alue = 5.7×10−11).

Finally when comparing our results with that by Zhu et al. [ZSV+00], we find that

none of the up-regulated genes and 7 (p− V alue = 7.2× 10−7) of the down-regulated

genes identified by them are in our top 100 genes. Again a negative correlation between

MARD value and essentiality is observed which is shown in Figure 3.6B.

4fkh14fkh2 double mutation have global effects on cell growth. With this double

mutation, the cells show pseudohyphal and invasive growth, unusual cell morphology,

and slow growth rates [ZSV+00]. Consistent with these phenotypes, many of the top

100 genes identified by our approach are involved in cell cycle, cell wall organization,

amino acid synthesis or pseudohyphal growth. For example, MEP1 (with rank of 76)

is an ammonium permease that regulates pseudohyphal differentiation in response to

ammonium limitation [LH98]. TEC1 (with rank of 43) is a transcription factor which is

involved in pseudohyphal growth [KWT+02]. This gene is also identified by Zhu et al.

but not by Bar et al. [ZSV+00]. PCL2 (CLN4, rank 24) is a G1 cyclin which associates

with Pho85p cyclin-dependent kinase (CDK) to contribute entry into the mitotic cell

cycle and is essential for cell morphogenesis [MMO+94, MA04]. We also checked

the genome-wide binding data [LRR+02] that described the association of Fkh1p and

Fkh2p with genes expressed in G1 and S phases, and found 7 genes bound by Fkh1p

(p−V alue = 0.014) and 15 genes bound by Fkh2p (p−V alue = 4.3×10−8) in the top

100 perturbed genes. Table 3.5.2 lists the top 60 genes that appear to be substantially

perturbed in the fkh14fkh24 double mutant. The Zhu, Bar column indicate that

whether a gene is identified by Zhu et al and Bar et al, respectively. FKH1 and FKh2

column indicate whether a gene is bound by the two transcription factors. As shown,

most of them are cell cycle related genes.
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3.6 Discussions and Conclusions

3.6.1 Measurement selection

As mentioned, the measurement for gene expression is ratio in the first data set (Ca2+

response w/o FK506 inhibition), while the measurement is log transformed ratio in the

second data set (4fkh14fkh2/wtcellcycle). In the first data, we want to identify

calcineurin-dependent Ca2+ activated genes as done by Yoshimoto et al. Although there

do exist some genes that are repressed by Ca2+, we are more interested in Ca2+ acti-

vated genes as what Yoshimoto et al. did in their paper. So in order to make our results

comparable with Yoshimoto’s results, we reduce the influences of Ca2+ repressed genes

by using ratio rather than log ratio as the measurement for gene expression. In such situ-

ation, the expression ratios for Ca2+ repressed genes are limited to [0, 1], while expres-

sion ratios for Ca2+ activated genes are always greater than 1. Since we use Euclidean

distance in calculating the change in neighborhood, the genes identified by MARD anal-

ysis tend to be genes that activated by Ca2+ in either FK506 treated or non-treated time

courses, and most Ca2+ repressed genes are ignored. We note that this is a special case,

in most cases we want to treat gene activation and repression equivalently and therefore

log ratio should be used as the gene expression measurement.

3.6.2 Neighborhood selection

To identify genes that are differentially expressed between treatment and control time

courses, we construct gene relationship networks for the the two time courses, respec-

tively. The genes substantially affected by the treatment are expected to show dramatic

changes in its neighbor genes. Essentially, here the neighbor genes refer in particular to

those genes that have small Euclidean distances with a specific gene, namely, proximal

neighbor genes. However if only proximal neighborhood changes are considered, one
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Figure 3.7: Effect of different neighborhood definitions and informative fraction q
(proximal only: proximal neighborhood; distal only: distal neighborhood; both: two-
end neighborhood). Zoom-in of the examined informative fraction q at interval [0.1%,
5%] is shown as an insert.

may fail to identify some co-affected genes because most of their proximal neighbor

genes are similarly affected by the treatment and therefore there’s no notable changes in

the neighborhood. To make up this problem, we take advantage of those distant neigh-

bor genes which have the largest Euclidean distances with the specific gene. We note

that there is no underlying biological relationship between these distant neighbor genes.

However, the distant neighbors of a gene tend to be from various function categories

and widely distributed in the relationship network. So the change in the relationships

between these distant neighbor genes and the specific gene may imply the global posi-

tion change of the gene in the whole relationship network, which can not be captured by

proximal neighborhood change. As shown in Figure 3.7, we studied the effectiveness

of the three neighborhood definitions (proximal only, distal only and two-end neighbor-

hood definition) while setting informative fraction q to range from 0.1% to 50%. MARD
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analysis is performed on the Ca2+ response time courses with and without FK506 treat-

ment. For each setting of the informative fraction q and neighborhood definition, the

number of those genes that are among the top 142 genes in our result and also among

those calcineurin dependent Ca2+ regulated genes reported by Yoshimoto et al. is calcu-

lated to measure the effectiveness of each neighborhood definition. The result shows that

the distal neighborhood definition can achieve more effectiveness if a large q (> 4%)

is used. But when q is small, the effectiveness of the distal neighborhood definition

is much worse than the other two definitions. In comparison, the proximal neighbor-

hood or two-end neighborhood can achieve good effectiveness across a wide range of

q. According to our experience of MARD analysis in various data sets, including two

data sets not reported in this article, we suggest using both-end neighborhood definition.

Our general strategy of selecting the fraction value q is as follows: first, we try MARD

analysis for q in a range, say [0.008, 0.05] as used in the above cases; second, we look

for a stable set of genes that is invariant across the range of q values; third, we validate

the function of these genes by scientific facts reported in the literature; fourth, we make

further hypotheses based on the computational results. This strategy works well in the

examples we have analyzed so far. We hope this bioinformatic methodology will ben-

efit other researchers. We note that the informative fraction q for proximal and distal

neighborhood do not necessarily need to be equal in the two-end neighborhood. Further

improvement is expected by setting different values for them.

3.6.3 Metric selection

The relationship between genes can also be measured by other metrics besides the

Euclidean distance. For example, Pearson correlation is often used to measure the

similarity between expression profiles of genes, based on which gene co-expression
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networks are constructed and used to predict gene functions, infer transcriptional reg-

ulatory networks, and so on [vNSH03, SSR+03]. In addition, comparing correlations

between genes across experiments has been proposed to further improve these stud-

ies [ZKH+05]. Generally, the correlation can be applied to infer the gene relationship

network in MARD analysis. But in practice, there are some disadvantages for using

correlation as the metric. First, most of the time course data contain only a small num-

ber (< 10) of time points, therefore it is inappropriate to use correlation to measure

the gene relationship. Second, several works have shown that co-expression network is

scale free in topology [vNSH04, BO04], and the number of nodes with a given degree

follows a power law distribution. In contrast to “random” networks, scale-free networks

are highly non-uniform. In the gene co-expression networks, the hub genes have many

co-expressed neighbors, while most other genes have only a few neighbors. This feature

may be taken into account when correlation is used for the MARD analysis and some

revisions may be required.

3.6.4 Robustness of MARD analysis

Like many other methods, MARD analysis is also sensitive to noise in the data set to

some extent. For example, if an artificial high ratio is introduced by noise at one time

point in either treatment or control time course, the corresponding gene may result in a

high neighborhood change. Actually this is one of the main challenges of time course

analysis. In general, it is hard to discriminate real gene expression change from noise

effect because gene may be differentially expressed in only one time point in a time

course. The noise effect can be reduced by average the replicates for each time points

if replicate experiments are performed. Another way to reduce the noise effect is to

increase the number of sampling time points so that a more accurate gene relationship

network can be estimated from the time courses. We investigate the influence of time
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Figure 3.8: Distribution of MARD values from sampled data sets where a subset of time
points in treatment and control time course are used.

points in the second data set, where 18 and 13 time points are sampled in the wild type

and 4fkh14fkh2 cell cycle experiment, respectively. We randomly choose 13 time

points from the wild type time course, and perform MARD analysis for the resulting

wild type and4fkh14fkh2 time courses, both of which have 13 time points. Then we

randomly remove one time point from both wild type and 4fkh14fkh2 time courses

each time and applied the MARD analysis to the new data set. The rank of MARD value

for each gene doesn’t have significant change if similar number of sample time points

are used in the two time courses. For example, all the C13
18 sampled 13/13 data sets (13

time points for either time course, C13
18 possible samplings in total) have a similar result

with the original 18/13 data set. The Spearman correlations are generally greater than

0.9 between MARD values of the sampled data sets and those of the original data set. If

only the top rank genes are considered, the results are even more consistent with each
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other. On the other hand, a clear shift of the distribution of MARD values was observed

when fewer time points are used, as shown in Figure 3.8. This indicates that estimation

of the gene relationship network is more likely to be influenced by noise when fewer

time points are used. We believe that MARD analysis is capable of giving more reliable

result with the improvement of microarray technology.

3.6.5 Significance level of MARD values

As so far, all the analysis and results show that the MARD statistics does reflect the

degree of perturbation of genes by a treatment. A higher MARD value implies a more

severe perturbation. However it is difficult to assign a significance level to an observed

MARD value because MARD values for all the genes are strongly dependent with each

other. For example, if a gene is substantially affected by a treatment, the MARD val-

ues of its neighbor genes will also tend to be large. In addition, it is hard to perform

permutation analysis for time courses as used in SAM [TTC01]. In a static microar-

ray experiment, one permutates samples to ”balance” the case and control data sets and

thereby estimate the false discovery rate based on the ”balanced” data sets. But in time

courses data, different time points provide different aspects of gene expression. There-

fore it is inappropriate to permute the time points to calculate the significance level of

MARD for each gene.

3.6.6 Conclusion

We have developed a new method to identify differentially expressed genes between

treatment and control time courses. Rather than comparing gene expression patterns

in the two time courses directly, we construct gene relationship networks for each of

the time courses and then measure the neighborhood change of each gene in the two
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networks. The genes that are substantially affected by the treatment, i.e. differentially

expressed genes, are those that have a remarkable neighborhood changes.

We applied our method to both aligned and un-aligned time course data sets. The

results in the aligned data set show that (1) Genes with high MARD values exhibit

different expression levels between treatment and control time course in all or a subset of

time points; (2) The genes identified by our method are consistent with previous studies,

where additional well-designed experiments are performed to ensure the accuracy of

the result; (3) We also found some genes that are related to the pathway of interest but

failed to be identified by previous approaches. Our method avoids direct comparison of

expression pattern of genes between time courses, therefore it is insensitive to sampling

effect. We do not require equal or “aligned” sampling time points in the treatment and

control time courses. So our method can be used to compare time courses from different

sources as shown in the un-aligned wt/4fkh14fkh2 cell cycle data set. In addition,

the MARD value can roughly reflect the importance of a gene in the cell system. Genes

with small MARD values tend to be house-keeping genes, most of which are essential

for cell survival.

3.7 Application of MARD on S.pombe stress response

data

In this section, we apply the MARD analysis on S.pombe stress response data. To

study the transcriptional response of fission yeast to environmental stress, Chen et al.

performed microarray experiment to characterize changes in expression profiles of all

known fission yeast genes in response to five stress conditions: oxidative stress caused

by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by

temperature increase to 39◦C, osmotic stress caused by sorbitol, and DNA damage
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caused by the alkylating agent methylmethane sulfonate [CTM+03]. Under each stress

condition, a short time course microarray experiment is performed, including three time

points at 0, 15 and 60 min, in wild type, sty14, and atf14 fission yeast. We combine

the expression profiles at 15 and 60 min in the five stress condition into a long time

course with 10 time points. The combination results in three time courses, correspond-

ing to wild type, sty14, and atf14 fission yeast, respectively. Pairwise comparison of

the three time courses with MARD analysis is performed to understand the function of

Sty1 and Atf1 in stress response.

3.7.1 Transcriptional responses of fission yeast to stress

Figure 3.9: Sty1 stress response pathway in fission yeast.

80



Exposure to low level of stress often results in a transient resistance to higher level

of the same stress, as well as to the other types of stress. The cross protection is

short-lived and requires new protein synthesis, indicating that changes in gene expres-

sion are critical. In S.pombe this phenomenon is a consequence of a common stress

response pathway, the Sty1 MAPK pathway, which regulates the responses to different

stresses [CTM+03]. It is known that in both budding and fission yeast, a similar core

group of genes response to all or most stresses. These genes are mainly regulated by

stress-specific mechanisms in budding yeast, whereas in fission yeast they response to

different stresses through the common Sty1 MAPK pathway. As shown in Figure 3.9,

Sty1, a mitogen-activated protein kinase, is activated by WIS1 kinase in response

to stress, which then stimulates transcriptional responses through a number of bZip

transcription factor, including Atf1, Pcr1, and Pap1 [GDSP98, DSH+04, DSWN+05].

Among these transcription factor, Atf1 is the most well studied. It is constitutively

localized in the nuclear and activated by Sty1 kinase through phosphorylation. Two

phosphatases, Pyp1 and Pyp2, act as negative regulator of the pathway by inactivating

the Sty1 kinase through dephosphorylation [NS99].

3.7.2 Results and conclusions

We perform MARD analysis to three time courses in a pairwise manner, which

results in three groups of MARD values, corresponding to sty14/wt, atf14/wt and

sty14/atf14, respectively. The histograms of the MARD value in the three time

course comparison are shown in Figure 3.10. The histograms in sty14/wt, atf14/wt

have long tails on the right hand, whereas the tail of the histogram in sty14/atf14
is much shorter. This phenomenon can be explained by the fact that Sty1 kinase reg-

ulate the gene expression mainly through the transcription factor Atf1 in response to

stress [GDSP98]. The high similarity of the MARD values in sty14/wt to those in
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Figure 3.10: Histograms of MRAD values in (A) sty14/wt, (B) atf14/wt and (C)
sty14/atf14.

atf14/wt is also shown in their scatter plot (Figure 3.11). As shown, most genes

follow into a high dense region in the middle part of the figure. These genes are not per-

turbed by the deletion of sty1 or atf1 gene. The small group of genes in the bottom-left

corner are likely to house-keeping genes whose expression keep constant in different

conditions. Those genes that close to the top-right are of interest, which are substan-

tially affected by both sty1 and atf1. The genes that are substantially affected only by

sty1 or atf1 are also what we are interested. For example, genes affected by sty1 but not

by atf1 imply that transcription responses of these genes are regulated by Sty1 kinase

but independent of Atf1, which may through another transcription factor such as PCR1

or PAP1.

In Table 3.3, we list the ranks of MARD values for 49 genes in three time course

comparisons: sty14/wt, atf14/wt, and sty14/atf14. In general, if a gene has high

rank (small number)in both sty14/wt and atf14/wt, it tends to have low rank (large

number) in sty14/atf14 (see the pyp1 gene); if a gene has high in either sty14/wt

or atf14/wt but low rank in the other, it is likely to have a high rank in sty14/atf14
(see the pyp2 gene). However, there are some special cases, such as the sou1 gene. It
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Table 3.3: Ranks of the MARD values for 49 genes in fission yeast.
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Figure 3.11: Scatter plot of MARD values in sty14/wt versus those in atf14/wt.

has high rank in all the three comparisons, which indicates that expression of sou1 is

affected by both sty1 and atf1 by in a different manner.

Figure 3.12 shows the expression values of the genes that have high ranked MARD

values in sty14/wt. The left 10 bars correspond to the time course in wild type

and the right 10 bars correspond to that in sty14. From to left to right, these 10

bars represent the log expression values in H2O2(15min), H2O2(60min), Cd(15min),

Cd(60min), Heat(15min), Heat(60min), Sorb(15min), Sorb(60min), MMS(15min), and
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Figure 3.12: Expression values of 20 genes in wild type and sty14 fission yeast. These
genes have the top 20 genes identified by MARD analysis in sty14/wt time course
comparison.

MMS(60min), respectively. As can be seen, these genes that identified by MARD anal-

ysis do exhibit differentially expressed patterns between the wild type and sty14 time

course. Similar results have been obtained in MARD analysis for the other two time

course comparisons: atf14/wt and sty14/atf14.
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Figure 3.13: Expression values of pyp1 and pyp2 in time course corresponding to wild
type, sty14 and atf14, respectively.

Expressions of pyp1 and pyp2 are regulated by different mechanisms

It is known that two tyrosine-specific phosphatases, Pyp1 and Pyp2, negatively regulate

the activity of Sty1 kinase via direct dephosphorylation of the tyrosine residue phospho-

rylated by the Wis1 kinase. Among the two phosphatases, Pyp1 accounts for the major

cellular activity that dephosphrylates Sty1 kinase and Pyp2 plays a minor role [NS99].

Phosphatase activities of Pyp1 and Pyp2 are inhibited in stress conditions. MARD anal-

ysis indicates that pyp1 and pyp2 are under quite different transcriptional regulation in

response to stresses. Expression of pyp1 is substantially affected by both Sty1 kinase

and the transcription factor Atf1, with a rank of 5 and 2 in sty14/wt and atf14/wt

time course comparison (in total, there are about 4410 genes), respectively. Whereas,

expression of pyp2 is substantially by the Sty1 kinase with a rank 4 in sty14/wt com-

parison, but not by Atf1 with a rank of 3025 in atf14/wt comparison. Figure 3.13

shows the expression values of pyp1 and pyp2 in the wild type, sty14 and atf14 time

course. The stress conditions are arranged from left to right in the same order as above

86



described. Based on our MARD analysis and the expression patterns of pyp1 and pyp2

in the three time courses, we may figure out the following hypothesis. First, in wild type

fission yeast, activation of the Sty1p kinase pathway by stress leads to up-regulation of

both pyp1 and pyp2. Second, although Pyp1 plays the major role in dephosphorylation

of Sty1 kinase, expression of pyp2 increases (over 30-fold) much more than that of pyp1

(less than 2-fold)as a result of the stress response. That is, pyp2 plays the key role in

the negative feedback loop. Third, expression increase of pyp1 depends on both sty1

and atf1; deletion of either of them cause significant down-regulation of pyp1 by up to

7-fold. Fourth, expression increase of pyp2 requires activity of Sty1 kinase but is inde-

pendent of Atf1. This may suggest up-regulation of pyp2 by Sty1 kinase is via another

transcription factor other than ATf1. Taking together, we may construct a regulatory

model for pyp1 and pyp2 as shown in Figure 3.14.

Figure 3.14: Function and regulation of pyp1 and pyp2 in the Sty1 stress response path-
way in fission yeast.

This model provides a good example that shows how delicate the natural designs

could be. In response to stress conditions, a group of genes are induced in fission yeast.
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Among them, there are some genes that negatively regulate the stress response path-

way, which ensures that the pathway can be rapidly shut down as soon as the stress has

been removed. To achieve this purpose effectively, both pyp1 and pyp2 are used. Pyp1

phosphatase plays the major role in dephosphorylation of Sty1 kinase but expression of

pyp2 increases more in the negative feedback loop. Moreover, up-regulation of pyp1

and pyp2, though both depending on Sty1, are via different transcription factors, which

enhances the robustness of the feedback loop.

Expression of pcr1 is affected by sty1 but not by atf1

Figure 3.15: Expression values of pcr1 in time course corresponding to wild type, sty14
and atf14, respectively.

Pcr1 is another bZip transcription factor that act downstream of Sty1 kinase in fission

yeast stress responses. MARD analysis suggests that expression of pcr1 is dependent on

Sty1, but not on Atf1. The ranks of MARD values for pcr1 in sty14/wt, atf4/wt, and

sty14/atf4 are 103, 1599 and 7, respectively. Expression values of pcr1 in those three

time courses are shown in Figure 3.15. These results indicate that Pcr1 acts downstream

of Sty1 kinase in parallel with Atf1.
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Expression of srk1 is affected by sty1 but not by atf1

Figure 3.16: Expression values of srk1 in time course corresponding to wild type, sty14
and atf14, respectively.

Srk1 is also a kinase that is involved in fission yeast stress responses. Previous

studies have shown that it presents in a complex with the Sty1 kinase and is directly

phosphorylated by Sty1 [STC+02]. Our MARD analysis results are consistent with

these studies. AS shown in Figure 3.16, expression of srk1 requires the activity of Sty1

but in a Atf1 independent manner. The ranks of MARD values for srk1 in in sty14/wt,

atf4/wt, and sty14/atf4 are 14, 1983 and 2, respectively.

Expression of ptc4 is affected by both sty1 and atf1

Other than Pyp1 and Pyp2, type 2C serine/threonine phosphatase (PP2C) also involved

in dephosphorylation of hence inactivation of Sty1 kinase [NS99]. Interestingly, MARD

analysis indicates that expression of ptc4, the gene that encodes PP2C, is also up-

regulated like pyp1 and pyp2 as a result of stress response in fission yeast. The up-

regulation of ptc4 depends on both sty1 and atf1; the ranks of MARD values are 9

and 60 in sty14/wt and atf14/wt, respectively (see Figure 3.17). Therefore, the
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Figure 3.17: Expression values of ptc4 in time course corresponding to wild type, sty14
and atf14, respectively.

up-regulation of ptc4 may reveals another negative feedback loop in fission yeast stress

response. Moreover, other than stress response, PP2C is also involved in many other

pathways fission yeast. These findings imply a possible mechanism that connect stress

responses to other pathways.

MBF may link stress response with cell cycle regulation

In fission yeast, activation of the stress response pathway leads to a inhibition of entry

into mitosis. The stress response pathway also promotes commitment to mitosis in

unperturbed cell cycles to allow cells to match their rate of division with nutrient avail-

ability [CTM+03, SP95]. The nature of the stress response pathway in cell cycle control

is not fully understood. Recently, several possible mechanisms have been proposed.

López-Avilés et al. proposed that stress activated Srk1 kinase blocks mitotic entry by

phosphorylating and inhibiting Cdc25 [LAGG+05]. Petersen et al. suggested that Polo

kinase linked the stress pathway to cell cycle control and tip growth [Pet]. Our anal-

ysis implies that MBF complex may also involved in the mechanism that links stress

response to cell cycle control in fission yeast.
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Figure 3.18: Expression values of cdc10 and res1 in time course corresponding to wild
type, sty14 and atf14, respectively.

In eukaryotic cells, a key regulatory step of the cell cycle entry occurs at late G1,

which has been termed “Start” in yeast. Mitotic entry through Start requires the activity

of one or more cyclin-dependent kinases (CDKs) and also the transcription activation

of specific genes encoding products for S phase [WSDJ99]. In fission yeast, transcrip-

tional activation at Start is mediated by MBF complex. The fission yeast MBF complex

contains Cdc10p and at least two additional proteins, Res1p and Res2p, which bind to

Cdc10 at their C-termini. It has suggested that cdc10 plays both positive and negative
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roles in cell cycle gene expression [MKCF95]. Res1 and Res2 are highly related but

functionally non-identical. The res14 cells have deficiency in mitotic cycle and a cold-

and heat-sensitive phenotype resulting in a G1 arrest [TOO+92].

Figure 3.19: A possible mechanism that link stress response to cell cycle control by
MBF.

MARD analysis indicates that expression of cdc10 depends on both Sty1 and Atf1;

the ranks of MARD values are 41 and 37 in sty14/wt and atf14/wt, respectively.

Expression of res1 also depends on Atf1 activity but in a Sty1-independent manner

with a rank of 122 for the MARD value in atf14/wt. Whereas expression of res2 is

not affected by both Sty1 and Atf1. Figure 3.19 shows the expression values of cdc10

and res1 in wild type, sty14 and atf14 time course. These results implies another

possible mechanism mediated by the MBF complex that links stress response to cell

cycle control. Note that the gene expression changes of cdc10 and res1 in response to

stress conditions are not large in magnitude, but their differential expressions in various

time courses are detected using MARD analysis. In some sense, this reveals that MARD

is more sensitive than the point-wise comparison method.

In conclusion, application of MARD analysis on the fission yeast stress response

data set reveals possible transcription regulatory mechanisms for many genes. Some of
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them are already known thanks to previous studies. The others are still lack of exper-

imental evidences or literature supports. Therefore, the hypothesis based on MARD

analysis may provide us some hints and directions for future biological studies.
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Chapter 4

Integrative analysis of long-lived yeast

mutants

Microarray technology provides a powerful tool for biological studies. It measures

expressions of thousands of genes from samples at the same time. Despite its great

success, microarray technology has its own inherent limitations. For example, case and

control design is frequently used in microarray experiment to compare gene expression

profiles in different samples. To understand the underlying mechanisms of certain dis-

ease, typically we collect samples from both patients and non-patients, and then we per-

form microarray experiment to measure gene expressions in the samples. This is what

is so called case and control experiment design. For data sets from this kind of experi-

ment design, differentially expressed genes between cases (samples from patients) and

controls (samples from non-patients) are often identified, which provide us a list of can-

didate genes that are potentially related to the disease. The limitations in this kind of

studies are: first, it only gives us some genes that change expressions in diseased people

compared to healthy people, but diseases are often associated with changes in certain

pathways. So a differentially expressed gene list is not enough to infer the mechanism

of the disease and analysis in higher levels, i.g. in pathway level, is required. Secondly,

the differentially expressed genes are more likely to be a consequence or side-effect of

the disease rather than the causal genes which are of more interest. Thirdly, the dif-

ferentially expressed genes are those genes that are significantly changed in diseased
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people. But the strength of relevance is not fully determined by magnitude of expres-

sion change. A small magnitude of expression changes for important genes may cause

substantial effect.

In this chapter, we perform analysis for the microarray data from our yeast ageing

project [Pro]. Collaborating with the laboratory lead by professor Long, we measured

gene expression profiles of four yeast knockout strains, as well as wild type yeast. These

knockout strains result in significant life span extension with respect to wild types. The

goal of the project is to investigate the mechanisms of longevity in these strains. To

overcome the problems mentioned above, we emphasize the importance of investigating

expression changes in high levels, for example in pathway level. Moreover, we will

show how high level analysis is facilitated by integrating large scale public data sets

from different sources, such as Gene Ontology (GO), ChIP-chip, gene localization, and

so on. In this chapter, we will first introduce the background knowledge and theories

about ageing; then we will describe the integrative analysis for our microarray data set

and show how this analysis exposes a common mechanism of longevity in four long-

lived yeast knockout strains.

4.1 Introduction to ageing

Ageing occurs in organisms ranging from yeast to humans. It describes all the changes

that occur in the molecules, organelles, cells, tissues, and organs of an organism.

4.1.1 Theories of Ageing

A number of theories have been proposed to explain the mechanism of ageing. In the

following section, we will briefly introduce several of them. Note that these theories

provide different but overlapping viewpoints with each other.
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The free radical theory

The free radical theory of ageing was first proposed by Harman in the 1950s [Har56].

In this theory, he suggested that aging was a consequence of free radical damage.

Later Harman extended the idea to implicate mitochondrial production of ROS in the

1970s [Har72]. According to this theory,ageing of organisms are caused by accumu-

lation of free radiacl damages in protein, lipid and nucleic acids (DNA, RNA) across

time. Free radical attack on protein, lipid and nucleic acids leads to a reduction in their

respective function, thereby decreasing cell function, then organ function, and finally,

organismal function. In biochemistry, the free radicals of interest are often referred to

as reactive oxygen species (ROS). ROS are generated in multiple compartments and by

multiple enzymes in the cell. These enzymes that contribute to the generation of ROS

include plasma membrane proteins, such as NADPH oxidases; enzymes that involved

in lipid metabolism within the peroxisomes; as well as various cytosolic enzymes, such

as cyclooxygenases. Although all these sources contribute to the overall intracellular

ROS generation, the majority of them are produced in mitochondria, as by-products of

oxidative phosphorylation.

The disposable soma theory.

The disposable soma theory of ageing was first introduced by Weismann and later devel-

oped by Kirkwood et al. [Kir88, Kir92, Kir02]. The basic idea of the theory is that cell

maintenance, such as DNA repair, protein turnover, and antioxidant defenses, requires

caloric energy. Competition of this with metabolic demands for energy have forced

natural selection into an optimization process which compromises between longevity

and growth or Reproduction. In most time, using extra energy to increase reproduc-

tive capacity will be more beneficial from an evolutionary standpoint, because it will

enhance the fitness of that individual. Therefore, organisms have evolved in such a way
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that the amount of energy invested in maintaining the soma is sufficient to keep the ani-

mal alive long enough to reproduce but less than that would be required to keep it alive

indefinitely. Consistent with this theory, trade-offs, such as decreased fertility or growth,

are observed in most but not all long-lived mutant organisms. However this theory con-

flicts with the fact that caloric restriction (CR) extends life span in many species.

The accumulated mutation theory

The theory was proposed by Medawar in 1952. The centrol idea of this theory is that

the force of natural selection decreases with age increasing [Par01]. For a deleterious

mutation that manifests itself at a young age, there will be strong selection pressure to

eliminate it. But mutations that cause deleterious effect in later life of an organism, can

be passed from generation to the next and may accumulate in the genome due to the

weakness of selection force.

The antagonistic pleiotropy theory

The theory was proposed by Williams in 1957. It suggests that genes exist which have

beneficial effects early in life but harmful effects later in life. If these genes confer

increased reproductive success early in life, they would be selected despite the fact that

they may cause a decline in vitality late in life. According to this theory, we can deduce

that mutations resulting in life span extension would cause defects in growth or fertility.

However this is not always true. For example, some daf-2 mutants in C.elegans, survive

for more than twice as long as wild type but grow and reproduce normally [LF03].

The programmed ageing theory

The programmed and altruistic ageing theory claims that ageing is programmed so that

organisms age and die to benefit related individuals or their group [LMS05]. According
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to the theory, an ageing and death program that benefits closely related organisms can

be explained by kin selection; and death for the benefit of unrelated organisms can be

explained by group selection. Theoretically, ageing could provide long term benefits

at the group or population level that include population stabilization, enhanced genetic

diversity, a shortening of the effective generation cycle and acceleration of the pace of

adaptation [FBV+04]. Local extinctions from overpopulation might facilitate a kind of

population-level selection that is strong and rapid enough to offset the individual costs

of programmed ageing.

4.1.2 Ageing in yeast

Replicative ageing

Replicative life span is defined as the total number of daughter cells generated by a

mother cell. For budding yeast, the mother cells reproduce asymmetrically by origi-

nating buds, which finally separate from the mother cells and grow into daughter cells.

The daughter cells are smaller than mother cells and can be easily recognized. The

mother cells become old and stop producing new buds after a certain number of divi-

sions. But the daughter cells do not inherit the senescence from the mother cells and

have the potential to live a full life span. To measure the yeast replicative lifespan, cells

are initially spread at low density onto growth medium agar and incubated to allow bud

emergence. Newly born daughter cells are micromanipulated to fresh areas of the plate.

The lifespan is determined by counting and removing the buds that they produce, until

they don’t bud any more.

The most commonly accepted explanation for the replicative ageing of yeast is

the accumulation of extrachromosomal ribosomal DNA circles (ERC) in old mother

cells [SMG97]. ERCs are self-replicating units produced in the nucleolus by rDNA

98



homologous recombination. Because they segregate in a highly biased manner to mother

cells during cell division, they are accumulated in mother cells in proportion to the num-

ber of cell divisions. The segregation bias also assures that daughter cells are ERCs

free and therefore live a full life span. After a certain of cell divisions, the old mother

cells contains too many ERCs, which may interfere with cell growth by titrating essen-

tial replication and transcription factors and result in replicative ageing. In consistent

with this model, yeast proteins Sir2 has been suggested to slow the replicative age-

ing of yeast by repressing mitotic and meiotic recombination between rDNA repeats

and thereby preventing the formation of ERCs [PDG99, MMG99]. Over-expression

of Sir2 extends the replicative life span whereas the deletion of SIR2 gene decreases

replicative longevity [MMG99]. On the other hand, mutation of another protein Fob1,

which increase the accumulation of ERCs by facilitating rDNA recombination, extend

the replicative life span [DPK+99].

To date, about 50 genes have been found to regulate replicative ageing. These

genes involve in different but interrelated biological processes, such as stress response,

genome stability, telomere function, energy metabolism, mitochondrial segregation and

so on. This reflects the complexity nature of mechanisms underlying yeast replicative

ageing.

Chronological ageing

The other system to measure yeast longevity has been developed by Longo’s labora-

tory [LGV96]. It measures the capacity of a population of non-dividng yeast to maintain

viability over time. Yeast can enter different non-dividing phases which depend on the

type and the level of nutrient available in the medium. In SDC medium, which contains

a limited amount of nutrients, yeast cells grow rapidly and then survive at high metabolic

rates for about six days. If yeast cells growing in SDC are switched to water between
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day 1 and 5, metabolic rates decrease and survival is extended by 2-3 fold. Incubation of

yeast in water can be viewed as a form caloric restriction. In SDC medium, yeast cells

enter a high-metabolic post-diauxic phase; whereas in water they enter a hypo-metabolic

stationary phase [Lon03]. Its seems that survival is regulated by analogous pathway and

mechanism in SDC median and in water, even though the cells are in different phases,

because long-lived mutants isolated by incubation in SDC also have a longer chrono-

logical life span when incubated in water. Therefore the chronological life span can be

measured in either system.

Replicative ageing model of yeast may be useful for understanding the aging of

dividing cells of high eukaryotes, while the chronological ageing model of yeast may

be informative of events in post-mitotic cells. Moreover, the chronological life span

models ageing of yeast in natural environment because it measures the survival of yeast

population in a non-dividing states. Despite of this difference, replicative ageing and

chronological ageing are highly related with each other. First, both forms of ageing are

characterised by a progressive deterioration in replicative potential that culminates in a

post-mitotic phenotype that may be termed senescence. Both forms of post-mitotic cells

exhibit surface wrinkling and an increased cell size [BS96, MKHS03]. Second, chrono-

logically aged cells exhibit impaired replicative longevities and vice versa [ASGG99].

Third, most of the genes that effect on chronological ageing also involved replicative

ageing. For example, deletion of Sch9 gene leads to extension of both replicative life

span and chronological life. However, these two forms of ageing may have different

metabolism. First, some genes have converse effects on them. Deletion of Ras2 causes

extension of chronological life span but reduces the replicative life span [Lon03]. In

additional, It has been demonstrated that Sir2 activity correlates with yeast replicative

life span: SIR2 deletion strains are short lived, whereas strains that overexpress SIR2
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are long lived [MMG99]. Sir2 promotes replicative longevity by repressing the recom-

bination of repetitive ribosomal DNA (rDNA) and the subsequent formation of extra-

chromosomal rDNA circles (ERCs). Sir2 decreases chronological longevity, perhaps by

promoting DNA damage, inhibiting stress resistance, and/or inhibiting the activation of

the alcohol dehydrogenase, Adh2 [FGB+05].

4.1.3 Sch9, Ras2, Tor1, Sir2 and ageing

Conservation and ageing

Mutations in genes that affect a wide range of biological processes have been found

to change life spans in model organisms. The biological processes include endocrine

signaling, stress response, metabolism, and telomere function, et al [Ken05]. In

Saccharomyces cerevisiae, about 50 genes have been identified as ageing related

genes [KKFK04a, KK05]. Despite their effect on ageing, these genes have different

functions. For example, Phb1 and Phb2 encode subunits of prohibitin complex, which

is involved in mitochondrial segregation [PJB+02]; Dna2, Ctf4 and Rad27 encode pro-

teins that play roles in maintaining genome stability [HBC+02]; Lag1 is involved in

ceramide biosynthesis [DCF+94]; Sod1, Sod2, Msn2, and Msn4 are stress response

genes; Hex2 encodes the hexokinase isoenzyme 2 that catalyzes phosphorylation of

glucose [KK05]. In addition, the effects of these genes on ageing are also dependent on

the genetic background of yeast strain and the type and level of nutrients in the medium.

Taken all these into consideration, it’s very difficult to explain ageing using a univer-

sal model. To understand the nature of yeast ageing, we must use some strategies to

simplify the problem.

One strategy is to take advantage of the conservation of genes that affect ageing

across different species. It seems that some genes are associated with ageing only in
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certain organisms. These genes obscure the common mechanism of ageing and com-

plicate the ageing studies. To overcome this problem, we may focus on processes or

genes that are found to be associated with ageing in different organisms. One may argue

that the causes of aging are not likely to be conserved from one organism to another,

because they are not adaptive. This claim is true. Ageing factors may not subject to

natural selection directly for the lack of selection force. However, the regulation of life

span in response to environmental conditions is adaptive and therefore very likely to be

conserved.

Calorie restriction and ageing

Following this strategy, we may center our attention to calorie restriction (CR) and three

relevant gene or gene groups. CR has been shown to achieve extension of life span in

a broad spectrum of organisms ranging from yeast to mammalian [LDG00, IAdC+04].

The animals under CR are characterized by lower body temperature, lower blood glu-

cose and insulin level, and reduced body fat and weight [KG03]. The CR animals

also appear to be more resistant to external stresses, including heat and oxidative

stress [SW96]. Evolutionarily, CR may represent adaptation to scarcity in a boom and

bust cycle. Any organism that could slow ageing and reproduction in times of scarcity

and remain able to reproduce when food reappeared would enjoy a competitive advan-

tage over neighbors that could not [HA89, GP05].

Sir2

Despite the controversy and uncertainty, three genes or gene groups may be relevant to

CR. The first gene is Sir2 [RH04, Gua05]. Previous studies have shown that the life

span of short-lived strain lacking Sir2 can not be extended by CR, which imply that Sir2

102



is required for life span extension by CR [LDG00]. Other evidences have been pre-

sented to show that CR and Sir2 act in different genetic pathways to promote longevity

and that Sir2 is not required for full life span extension in response to CR [KKFK04b].

Later Lamming et al. reported that CR fails to extend life span in a strain lacking both

SIR2 and HST2 at 0.5% glucose. They concluded that CR extends life span by reduc-

ing rDNA recombination and ERC formation in a SIR2- and HST2-dependent fash-

ion [LLEM+05, LLEM+06]. But another group obtained a conflicting result using the

same genetic background. Their result shows that CR is still able to extend life span both

in yeast strains that lack Sir2, Hst2, and Fob1 and in yeast that also lack Hst1 [KSH+06].

Although the relationship between Sir2 and CR may continue to be debated, it is gen-

erally accepted that Sir2 plays some roles in ageing in different organisms. An extra

copy of Sir2 extends yeast replicative longevity by 40% by reducing both rDNA recom-

bination and the accumulation of extrachromosomal DNA circles (ERCs) [MMG99].

Conversely, the deletion of SIR2 dramatically decreases replicative life span [MMG99].

Fabrizio et al. indicated that the effects of Sir2 on chronological life span are oppo-

site to replicative life span. They suggested that the lack of Sir2 along with calorie

restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a

dramatic chronological life-span extension [FGB+05]. In C. elegans, dosage of the SIR2

ortholog, sir-2.1, increases the mean life span by up to 50% [HATG01]. In flies, the Sir2

ortholog, dSir2, has been reported to extend life span as well [RH04]. In addition, life-

span extension by CR is blocked in strains lacking dSir2. These findings suggest that

CR works through a Sir2-dependent mechanism in this organism.

RAS/cAMP/PKA pathway

The second group of genes that are relevant to CR includes TOR, PKA, and SCH9. It

has been shown that at either 0.5% or 0.05% glucose, CR extends life span of yeast in a
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Figure 4.1: Longevity regulatory pathway in five organisms. The figure is copied from
Longo et al.(NATURE REVIEWS GENETICS, Vol. 6, 866-872).

manner dependent on the nutrient-responsive kinases, TOR, PKA, and SCH9 [FPP+01,

KPS+05]. Mutations that result in decreased activity of PKA, Sch9, or TOR increase

both replicative and chronological life span. Moreover, the long replicative life span of

TOR and Sch9 deletion strains is not further increased by calorie restriction [KPS+05],

suggesting that TOR and Sch9 might mediate replicative life-span extension by calorie

restriction [KSK05]. Of more importance, mutations that decrease the activity of the

orthologous proteins (Tor and Akt) in worms and flies also extend life span, suggesting

that these kinases share an evolutionarily conserved role in responding to nutrients and

growth factors.

In yeast and higher eukaryotes, TOR, Sch9, and PKA coordinate signals from nutri-

ents and growth factors to regulate ribosome biogenesis, stress response, cell size,

autophagy, and other cellular processes. This represents a common longevity pathway
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that is conserved from yeast to mouse as shown in Figure. 4.1. As have been men-

tioned, down-regulation of the pathway results in longevity in organism from yeast to

mouse. For example, mutations that decrease the level or activity of IGF1 in mouse

extend lifespan by up to 65% compared with that of the wild type. Conservation of the

longevity regulatory pathways suggests that at least part of these pathways evolved from

a common set of starvation-response genes in the ancestral organisms.

Stress response genes

The third group of genes includes some genes downstream of the longevity regulatory

pathway, such as Msn2, Msn4, and SOD genes. The effect of these stress responses

genes have been studied in different organisms. In yeast, over-expression of Sod1

and Sod2 increases the life span by about 30%. In C.elegans, life span of wild type

worms can be extended if they’re treated with small synthetic SOD/catalase mimet-

ics [MRM+00]. In M.drosophila, over-expression of Sod1 increases survival rate by

up to 40% [PED+98]. Although stress response genes may play important roles and

sometimes are essential for longevity (i.g. Sod2 is required for life span extension

in Sch94) [FLM+03], they are likely to act as the effectors of the above mentioned

longevity pathway.

In our ageing project, we focus our attention on four genes: Sch9, Tor1, Ras2, and

Sir2. Ras2 encodes a GTP-binding protein, which stimulates the production of cAMP by

adenylate cyclase and therefore is a positive regulator of the PKA activity. We produced

four long-lived yeast knock-out strains: sch94, tor14, ras24, and sch9sir24. Then

we measured the gene expression profiles in these strains. By integrating other public

available data sources, we performed computational analysis on the microarray data.

We hope our work can shed light on the underlying mechanisms of longevity in these

strains.
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4.2 Materials and methods

4.2.1 DNA Microarray hybridization and data processing

Yeast were grown in SDC medium containing 2% glucose and supplemented with amino

acids, adenine, and uracil for two and half days. Then cells were collected from wild

type, sch94, ras24, tor14 and sch9sir24 strains. They were used to extract total

RNA according to the acid phenol method.

Total RNA from independent cultures of each strain was used as a template to

synthesize complementary RNA (cRNA) and the cRNA was hybridized to Affymetrix

GeneChip Yeast2.0 Array. For each of the five strains, three replicate arrays were gen-

erated, of which each corresponds to RNA obtained from independent population. All

the replicates for the same strain are highly consistent with Pearson correlation coef-

ficients greater than 0.96. The probe-level data was normalized using ”Invariant Set”

method. The expression levels of all probe sets were calculated using “Model-Based

analysis of Oligonucleotide Arrays”[LW01a] with “PMonly” PM correction. Biocon-

ductor affy package software was used for the analysis(http://www.bioconductor.org/).

Note that we did not use the Sub-Sub method to do normalization for the data, because

the chips used in this study, Affymetrix Yeast2.0 Array, contains probes from two yeast

species: S.cerevisiae and S.pombe, which make it inappropriate to apply our normaliza-

tion method.

The Yeast2.0 Array contains probe sets for both S.cerevisiae and S.pombe. Only

probe sets from S.cerevisiae are used in later analysis. Gene expression change were

calculated between two strains using pairwise comparison. So 3× 3 comparisons result

in 9 ratios, which are averaged to get the mean fold change (FC). Fold changes of all

the S.cerevisiae probe sets were calculated for comparisons: sch94/wt, ras24/wt,

tor14/wt, sch9sir24/wt, and sch9sir24/sch94. Most genes correspond to only
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one probe set in Affymetrix GeneChip Yeast2.0 Array and the average fold changes

were used for genes with multiple probe sets.

4.2.2 Gene Ontology analysis

GO information was downloaded from “ftp://genome-ftp.stanford.edu/pub/go/ontolog-

y/” based on data at July 29, 2005. Yeast gene annotation data was downloaded from

“ftp://genome-ftp.stanford.edu/pub/go/gene association/”. The data structure for gene

ontology (GO) is directed acyclic graph (DAG). Each node in the DAG is a set of

genes with given annotations. Nodes that are closer to the terminal have more detailed

annotation and thereby are more informative. To avoid redundancy and overlapping

between GO nodes, we identified 44 cellular components, 53 molecular functions and

109 biological processes informative nodes from the GO DAG. Terminal informative

nodes are defined as those nodes that are closest to the terminal and have at least 30

genes. The GO categories that associate with terminal informative node is defined as

terminal informative GO categories (TIGO).

In general, to test whether a priorly defined set of genes S is significantly affected

in a mutation strain(e.g., sch94), we applied a similar method as the Gene Set Enrich-

ment Analysis[STM+05]. We rank the log transformed fold changes of all genes in

sch94/wt, which results in a ranked list G. If S is not significantly affected, we would

expect that the members of S are randomly distributed throughout G. Otherwise we

claim that S is significantly affected. If most members of S are found at the top of list

G, we define it as positively affected gene set. Conversely, if most members of S are

found at the bottom of list G, we define it as negatively affected gene set. In practice,

we simply compare the fold changes of genes in S with those in G− S using Wilcoxin

rank test. Here the gene set S can be a GO category, genes related to pathway, genes
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bound by a transcription factor, or genes localized in the same organelle. To guarantee

a reliable result, we only apply this test to gene sets with at least 10 members.

Based on the method described above, we calculated p-values for all the defined

TIGO categories. Then we performed multiple testing correction using method intro-

duced by Storey et al. [ST03]. The q-values were computed using ”qvalue” package

provided in R software (http://www.r-project.org/). We compared our results with those

obtained by running the web program: GOstat (http://gostat.wehi.edu.au/) [BS04]. They

are in good consistency. By taking only the terminal informative GO categories rather

than all the GO nodes, our method avoids the redundancy problem and the results are

easier to be interpreted.

4.2.3 Pathway analysis

To understand the mechanisms of ageing, it is helpful to find out which pathways

are changed in the long-lived mutants, which motivates us to identify the signifi-

cantly affected pathways. We downloaded the pathway data set from KEGG database:

http://www.genome.jp/kegg/. The data set includes 102 S.cerevisiae pathways in total.

To identify significantly affected pathways in each strain, p-values and q-values were

calculated for each pathway using methods described above. Here, all the genes belong

to a pathway forms a gene set.

4.2.4 Cellular organelle analysis

Here we regard genes with the same cellular localization as a gene set and performed

the analysis described above. The cellular localization data was downloaded from

http://yeastgfp.ucsf.edu/. In this data set, ,75% proteins were classified into 22 distinct

subcellular localization categories, including mitochondria, nucleus, nucleolus, vacuole,
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vacuole membrane, budding neck, etc. It is known that some organelles, such as mito-

chondria, play a central role in ageing of yeast. We hope that the cellular organelle anal-

ysis would provide some information about yeast ageing in the sub-cellular (organelle)

level.

4.2.5 ChIP-Chip based transcription factor analysis

It is often difficult to determine whether the activity of a transcription factor is changed

or not according to its expression level in a microarray data. Because, first the activ-

ity of a transcription factor is often regulated in protein level, i.g. by phosphorylation

or translocation, rather than in mRNA level; Secondly, transcription factors are often

expressed in a low level, which makes it difficult to detect the expression changes of

them due to the high noise in microarray data. As such, we have to apply an indirect

strategy to identify the affected transcription factors by investigating the target genes

that are regulated by the transcription factor. In yeast, large scale studies have been

performed to identify the interactions between transcription factors and genes by using

ChIP-Chip experiment. Here we use this valuable data source to infer significantly

affected transcription factors in the four long-lived mutants. We downloaded the Chip-

Chip data set from http://web.wi.mit.edu/young/regulatory code/. It contains gene bind-

ing information for 203 transcription factor (TF), where each TF-gene association was

assigned a p-value. We set the threshold to be 0.001, which corresponds to a false pos-

itive of about 4% and a false negative of about 25%[HGL+04]. Again the target genes

for each TF were regarded as a gene set and the significantly affected TFs are identi-

fied using the methods described above. Our method is relatively robust to the noise in

Chip-Chip data, because when we lower the threshold for TF-gene association down to

0.01, we obtain very similar results.
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4.2.6 Motif enrichment analysis

The previously described transcription factor analysis has a major limitation, because

the target genes regulated by a TF is determined based on ChIP-Chip experiment. The

cells for ChIP-Chip experiment were cultured in YPD medium at log phase, whereas the

cells in our microarray experiment were grown in SDC medium and collected at day 2.5.

As we know, the gene set regulated by a TF could be different in various conditions. To

overcome this problem, we perform motif enrichment analysis which takes advantage

of the sequence information in the regulatory region of all genes. Basically, we analyze

the enrichment of a motif in the up- or down-regulated genes. Those enriched motifs are

likely to be the regulatory binding sites of TFs that cause the up- or down-regulation.

We use AlignACE with 12 bp motifs, and search up to 800 bp upstream of

each gene in S. cerevisiae. After removing the redundancy, 666 motifs were

obtained, including 51 motifs with known binding transcription factors. For

each gene, the upstream motifs, motif orientations and scores were recorded.

Refer to Beer et al. [BT04] for details and the motif data is available at

http://genomics.princeton.edu/tavazoie/Supplementary%20Data.htm.

To identify the enriched motifs in a given gene set of size K, we used hypergeometric

test. Suppose there are totally M genes with a given motif, and the rest N genes don’t

have this motif (in total there are M+N genes). Let X be the number of genes in the gene

set that contain the motif, then X ∼ hyper(M,N, x). That is:

p(M,N, x) =


M

x





 N

K − x





M + N

M



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The P value for an observed x is Pr(X ≥ x|M,N), namely, the probability of observing

at least x genes with the interested motif by chance. We calculated the p-values of all

the 666 motifs in the up-regulated gene set and down-regulated gene set. Then multiple

testing correction was performed and q-value was computed for each motif using the

“qvalue” package provided in R software. An arbitrary threshold of 2 (fold change) was

used to determine up- or down-regulation.

4.3 Results

4.3.1 Similarity of gene expression profiles in the long-lived mutants
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Figure 4.2: Similarity of gene expression profiles in the four long-lived mutants:
Sch94, Ras24, Tor14 and Sch9Sir24.

We collected the RNA samples at day 2.5 from S.cerevisiae wild type and four long-

lived mutant strains: sch94, ras24, tor14 and sch9sir24. The expression levels

for 5841 genes were measured using Affymetrix GeneChip Yeast2.0 arrays. Then we
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calculate the log transformed fold changes (log ratio) for all genes in the four mutant

strains versus in wild type, respectively. These calculations result in an expression pro-

file for each mutant, which reflects the gene expression change in the corresponding

mutant with respect to the wild type strain. As shown in Figure 4.2, the expression

profiles of the four long-lived mutants are highly similar to each other. This may imply

that deletion of sch9, ras2, tor1 or sch9sir2 influence a common set of downstream

genes. Previous study has proposed that protein Sch9, Tor1 and Ras2 control a molecu-

lar switch that regulates the response to nutrient availability [REM+05]. Therefore, the

similarity of expression profiles of them is more or less expected.

4.3.2 Differentially expressed genes in the long-lived mutants

By arbitrarily setting 2 as the threshold for up- and down-regulated genes, we found

147, 324, 132, 304 up-regulated genes (log ratio ≥ 2) and 130, 364, 60, 425 down-

regulated genes (log ratio ≤ 2) in sch94, ras24, tor14 and sch9sir24 strain with

respect to wild type, respectively. Among these genes, 65 up-regulated genes and 24

down-regulated genes are shared by all these four mutants (see Table 4.1 and Table 4.2).

It was suggested in previous studies that Ras2, Tor1 and Sch9 are all involved in

low nutrient response and adaptation, in which the PKA kinase plays an important

role [REM+05, ZMC05, PDC+03, Lon03, CCL+99]. Consistently, we find many of

the common up-regulated genes in the long-lived mutants are functionally related to

this pathway. In all the four long-lived mutants, expressions of Hxt2 and Hxt4 are up-

regulated. It is known that these two genes encode high-affinity glucose transporters of

the major facilitator superfamily whose expression is induced by low levels of glucose

and repressed by high levels of glucose [OJ95, OJ99]. The increase of their expression

may facilitate the transport of glucose into yeast cells from medium. Another gene,
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Table 4.1: The common up-regulated genes in the four mutants.
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Rpi1, is also up-regulated in all the mutants. The protein RPI1 is an inhibitor of the Ras-

cAMP pathway, whose over-expression suppresses the heat shock sensitivity of Ras2

over-expression in wild type. Thus, up-regulation of Rpi1 may enhance the stress resis-

tance in these mutants which may contribute to the life span extension.

Interestingly, we found that the expression level of Tpk1, which encodes one of the

subunits of cAMP dependent kinase PKA, is decreased in all the mutants. This is out

of our expectation, because RAS2 positively regulates the PKA kinase activity and we

may expect a down-regulation of the genes that encode subunit of protein kinase PKA.

The contradiction may reflect the gap between gene expressions and protein activities.

Deletion of Ras2 gene causes repression of the PKA pathway by regulating the protein

activities. Whereas in the gene expression level, there may be a negative feedback which

increases the expression of genes encoding subunits of PKA kinase. On one hand, the

regulation in protein activities is more sensitive than that in gene expression levels. On

the other hand, negative feedback is often used to ensure that a pathway can be shut

down when the signals are removed. The regulation the PKA pathway by Ras2 may

be more complicated and elaborated than what we have thought. Additionally, the high

similarities between the expression profiles in the four mutants are interesting. Ras2,

Tor1 and Sch9 may regulate the nutrient responses through a common or at least a

related mechanism.
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Table 4.2: The common down-regulated genes in the four mutants.

In the common down-regulated genes (see Table 4.2), 13 out of these 24 genes

encode mitochondria proteins that include 8 mitochondria ribosomal proteins (RP). It

is known that mitochondria plays an important role in ageing. Down-regulation of mito-

chondria genes implies that the dependence of cells on mitochondria is reduced in the

long-lived mutants. In contrast to the down-regulation of mitochondria RP genes, the

cytosolic RP genes tend to be up-regulated. In the 65 common up-regulated genes, 6

are cytosolic RP genes. It has been suggested that TOR1 regulates RP gene expression

via PKA pathway and inhibition of TOR1 protein by rapamycin causes repression of

RP gene expression [MSH04]. It is interesting to see that expressions of cytosolic RP

genes are up-regulated in Tor14 mutant. It is possible that TOR1 may not be essential

for expression of RP genes and the up-regulation of RP genes in Tor14 is caused by

proteins that have redundant functions with TOR1. Alternatively, it could be simply a

consequence of the delay of ageing in the long-lived mutants. The expression of RP
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genes decreases after cells enter the stationary phase during ageing. Since the ageing is

delayed in the long-lived mutants, the cells from the mutants are “younger” than those

from the wild type collected at the same day. In comparison with the “elder” wild type

cells, the expression of RP genes in “younger” mutants are less reduced and therefore

appear to be up-regulated.

The overlapping between the differentially expressed genes in the four long-lived

mutants is shown as venn diagrams in Figure 4.3. As can be seen, both the up-regulated

and down-regulated genes in these mutants are highly overlapped.

4.3.3 Significantly affected GO categories in the long-lived mutants

To understand the mechanisms of longevity, we would like to know which function

categories are changed in the long-lived mutants. The Gene Ontology (GO) project has

developed three structured, controlled vocabularies (ontologies) that describe gene prod-

ucts in terms of their associated biological processes (P), cellular components (C) and

molecular functions (F) in a species-independent manner [Ont]. A cellular component is

just that, a component of a cell, but with the proviso that it is part of some larger object;

this may be an anatomical structure (e.g. rough endoplasmic reticulum or nucleus) or a

gene product group (e.g. ribosome, proteasome or a protein dimer). A biological pro-

cess is series of events accomplished by one or more ordered assemblies of molecular

functions. Molecular function describes activities, such as catalytic or binding activi-

ties, at the molecular level. It can be difficult to distinguish between a biological process

and a molecular function, but the general rule is that a process must have more than one

distinct steps.

The GO uses a directed acyclic graph (DAG) to represent the hierarchical structure

of gene function categorization. In the DAG, each node includes a set of gene with

the same function terms. The terms that associated with a node closer to the terminals
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Figure 4.3: Overlap of up-regulated (numbers over the line) and down-regulated (num-
bers below the line) genes in the four long-lived mutants: Sch94, Ras24, Tor14 and
Sch9Sir24.

are more informative. To avoid redundancy and low informativeness, we selected only

those GO categories that are closest to the terminal in the DAG and contain at least 30

genes. We denote these GO categories as terminal informative GO categories (TIGO).

Totally, we selected 44 cellular component TIGOs, 53 molecular function TIGOs and

109 biological process TIGOs from S.cerevisiae. From them, we identified some TIGOs
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that are positively affected (see Table 4.3.3) or negatively affected (see Table 4.3.3) in

at least one of the long-lived mutants. Totally there are 7 cellular component TIGOs, 4

molecular function TIGOs, 8 biological processing TIGOs that are positively affected

and 19 cellular component TIGOs, 12 molecular function TIGOs, 28 biological pro-

cessing TIGOs that are negatively affected in at least one the comparisons: sch94/wt,

ras24/wt, tor14/wt, and sch9sir24/sch94.

118



Ta
bl

e
4.

3:
Po

si
tiv

el
y

af
fe

ct
ed

T
IG

O
ca

te
go

ri
es

in
th

e
fo

ur
m

ut
an

ts
.

119



Ta
bl

e
4.

4:
N

eg
at

iv
el

y
af

fe
ct

ed
T

IG
O

ca
te

go
ri

es
in

th
e

fo
ur

m
ut

an
ts

.

120



121



Positively affected TIGO categories

Our TIGO analysis shows that the GO categories that are associated with cytosolic large

ribosomal subunit (GO:0005842) and cytosolic small ribosomal subunit (GO:0005843)

are positively affected in all the long-lived mutants. Namely, genes that belong to these

categories tend to be up-regulated in the mutants with respect to the wild type. The GO

category associated with monosaccharide catabolism is also positively affected. Genes

in this GO category are involved in chemical reactions and pathways that result in the

breakdown of monosaccharides, polyhydric alcohols containing either an aldehyde or a

keto group. This may reflect the enhancement of cells from the the mutants to consume

glucose in the medium. Although most of the TIGOs are similarly affected in the four

mutants, some of them are specifically affected in certain mutants. For example, the GO

category associated with cell wall is negatively affected (notable but not significant)in

the sch94, but positively affected in the all other three mutants.

Negatively affected TIGO categories

More TIGO categories are negatively affected in the long-lived mutants, which include

categories that are associated with aerobic respiration (GO:0009060), mitochondria

organization and biogenesis (GO:0007005), histone modification (GO:0016570), oxida-

tive phosphorylation (GO:0006119), and so on (see Table 4.3.3. As can be seen, many

of the negatively affected TIGOs are related to mitochondria, which may imply a lower

mitochondria metabolic rate in these mutants. The rate of energy generation and con-

sumption in the mutants may be reduced, because the aerobic respiration (GO:0009060),

the oxidative phosphorylation (GO:0006119), and the electron transport (GO:0006118)

categories are all negatively affected. In addition, the GO categories associated with

global transcription and translation are also negatively affected, which include GO
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categories that are related to transcription initiation from RNA polymerase II pro-

moter (GO:0006367), transcription from RNA polymerase III promoter (GO:0006383),

mRNA metabolism (GO:0006402), the mRNA-nucleus export (GO:0006406), process-

ing of 20S pre-rRNA (GO:0030490) and translation initiation (GO:0006413). On the

other hand, the category associated with proteasome complex (GO:0000502), which

catalyzes protein degradation is also negatively affected. Therefore, we may expect

a low rate of gene transcription and protein translation, as well as a low rate of pro-

tein degradation in the long-lived mutants. Cells of long-lived mutants survive in an

economical style in comparison with the wild type. The low metabolic rates in these

mutants remind us about the similar features that appear in yeast cells under calorie

restriction (CR). Deletion of Sch9, Ras2 or Tor1 may imitate the responses to CR and

thereby extend the life span. Namely, the life span extension under CR may depend on

a mechanism in which SCH9, RAS2, and TOR1 are involved.

When we compare sch9sir24 with sch94, the significantly affected TIGO cat-

egories are different from those in the four mutants (compared with wild type). As

known, deletion of Sch9 increases the life span by three fold. Double deletion of Sch9

and Sir2 extends the life span up to six fold, although single deletion of Sir2 cause no sig-

nificant change of life span. The difference in significantly affected TIGOs may imply

a different mechanism of further life span extension in the double mutant sch9sir24
with respect to single mutant sch94.

4.3.4 Significantly affected pathways in the long-lived mutants

Despite the informativeness of GO categories, they are simply sets of genes with associ-

ated functions. For example, the biological process categories in GO are not equivalent

to pathways. As a matter of fact, GO does not try to represent the dynamics or dependen-

cies that would be required to fully describe a pathway. To investigate the mechanism
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Table 4.5: Positively and negatively affected pathways in the long-lived mutants. Sig-
nificant affected pathways (q-value≤0.01) are shown in bold.

Positively affected pathways
sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Pathway
p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value

Starch and sucrose metabolism 0.58 0.82 0.0046 0.045 0.046 0.21 0.0032 0.035 4.4E-06 2.1E-04
N-Glycan biosynthesis 0.23 0.54 8.8E-05 0.0032 0.048 0.21 0.0052 0.046 7.4E-04 0.016
Glycolysis / Gluconeogenesis 0.0022 0.025 8.2E-07 4.8E-05 1.5E-04 0.0050 2.1E-05 8.7E-04 9.5E-04 0.018
Galactose metabolism 0.30 0.64 2.7E-04 0.0072 0.020 0.12 0.035 0.18 0.0014 0.023
Glycan structures - biosynthesis 0.026 0.15 1.8E-04 0.0052 0.030 0.16 0.0041 0.042 0.015 0.10
Fructose and mannose metabolism 0.0085 0.067 3.0E-04 0.0072 0.0050 0.045 0.0019 0.024 0.033 0.17
Ribosome 0 0 3.7E-15 2.7E-13 0 0 2.2E-16 2.2E-14 1.00 0.82

Negatively affected pathways
sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Pathway
p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value

Basal transcription factors 1.8E-04 0.0042 1.6E-07 2.8E-05 1.7E-04 0.0042 1.9E-06 1.4E-04 1.9E-05 8.3E-04
Citrate cycle (TCA cycle) 3.3E-04 0.0073 0.0077 0.082 2.5E-05 9.3E-04 0.012 0.100 0.73 0.86
Oxidative phosphorylation 6.0E-06 3.6E-04 0.0041 0.054 2.7E-05 9.3E-04 0.0078 0.082 0.96 0.86
Proteasome 2.1E-03 0.034 1.8E-07 2.8E-05 0.0057 0.073 3.6E-05 0.0011 7.9E-05 0.0022
Ribosome 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86 1.0E-06 1.1E-04
SNARE interactions in vesicular transport 0.14 0.49 0.0035 0.048 0.40 0.78 0.0014 0.026 8.8E-06 4.5E-04

of longevity of the long-lived mutants, we analyze the difference between them and the

wild type from a pathway perspective. We downloaded 102 pathways of S.cerevisiae

from the KEGG database [oGG] and identified all the significantly changed pathways in

the mutants with respect to the wild type. Totally 7 pathways are positively affected and

6 pathways are negatively affected in at least one of the five comparisons: sch94/wt,

ras24/wt, tor14/wt, and sch9sir24/sch94 (see Table 4.5).

Positively affected pathways

As shown in Table 4.5, the Glycolysis/Gluconeogenesis pathway is positively affected

in the four long-lived mutants with respect to the wild type. Glycolysis includes 10 reac-

tions occurring in the cytosol that converts glucose into pyruvate. In aerobic organism,

glycolysis is the prelude to the citric acid cycle (TCA) and the electron transport chain in

oxidative phosphorylation. The glycolytic pathway has a dual role: it degrades glucose

to generate ATP, and it provides building blocks for the synthesis of cellular compo-

nents. Gluconeogenesis is the synthesis of glucose from noncarbohydrate sources, such
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as lactate, amino acids, and glycerol. Our results suggest that genes involved in the Gly-

colysis/Gluconeogenesis pathway tend to be up-regulated in the mutants, which may

result in a enhancement of the cells to make use of glucose or other carbon sources.

Two other sugar related pathways, the galactose metabolism and the fructose and

mannose metabolism, are also positively affected in the long-lived mutants, though they

are affected as significantly as the Glycolysis/Gluconeogenesis pathway. The ribosome

pathway (not include mitochondria ribosomal subunits) is also positively affected, which

is consistent with our GO analysis.

Negatively affected pathways

In the long-lived mutants, TCA cycle and oxidative phosphorylation pathways are nega-

tively affected. The TCA cycle, also called citric cycle, is the final common pathway for

the oxidation of fuel molecules. It also serves as a source of building blocks for biosyn-

thesis. The TCA cycle operates only under aerobic conditions, because it requires a

supply of NAD+ and FAD, which are changed into NADH and FADH2 after accepting

electrons. These electron acceptors are regenerated when NADH and FADH2 transfer

their electrons to O2 through the electron transport chain. In oxidative phosphoryla-

tion, the electron transport chain is coupled to the synthesis of ATP by a proton gradient

across the inner mitochondria membrane. Oxidative phosphorylation is the major source

of ATP in aerobic organisms. In yeast, the reaction of the TCA cycle and oxidative

phosphorylation occur inside the mitochondria, in contrast to those of glycolysis, which

occur in the cytosol. Under aerobic conditions, oxidative phosphorylation is efficient to

generate ATPs, but at the same time it produces the reactive oxygen species (ROS) as by

products, which is thought to be one of the causes of ageing. The repression of the two

pathways in the long-lived mutants may provide us some hints about the mechanism of

longevity of them.
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The basal transcription factors form a complex that acts as a general transcription

machine. Interestingly, we found that the complex is negatively affected, or down-

regulated in expression, in all of the long-lived mutants. This is also consistent with

the results obtained by GO analysis. The down-regulation of the basal transcription

factors may reflect the low metabolic rate in these mutants. The cells live a economical

life and thereby only a low basal transcription is required to maintain survival. Also,

proteasome, the complex in charge of protein degradation, is negatively affected in the

long-lived mutants.

4.3.5 Significantly affected cellular components in the long-lived

mutants

Table 4.6: Positively and Negatively affected Cellular organelles. Significant find-
ings (q-value≤0.01) are shown in bold.

Positively affected cellular organelles
sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Cellular Organelle
p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value

ER 4.2E-04 0.0033 0.0E+00 0.0E+00 3.7E-09 8.0E-08 3.1E-08 5.4E-07 5.0E-10 2.2E-08
vacuole 6.1E-05 5.8E-04 1.1E-09 3.2E-08 3.1E-06 3.5E-05 4.5E-07 6.5E-06 2.0E-04 0.0017
vacuolar membrane 0.0042 0.022 0.038 0.14 4.7E-04 0.0033 0.049 0.2 0.34 0.64
actin 0.0014 0.0080 0.32 0.62 9.4E-04 0.0058 0.046 0.1 0.66 0.78
endosome 0.040 0.14 0.66 0.78 7.5E-04 0.0050 0.4 0.7 0.96 0.78
punctate composite 0.083 0.24 0.66 0.78 0.0016 0.0085 0.4 0.7 0.89 0.78
cytoplasm 3.3E-06 3.5E-05 0.99 0.78 0.016 0.078 0.8 0.8 1.00 0.78

Negatively affected cellular organelles
sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Cellular Organelle
p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value

mitochondrion 3.9E-37 1.6E-35 8.4E-29 1.4E-27 1.4E-43 1.1E-41 3.0E-24 3.5E-23 0.028 0.081
nucleus 9.3E-07 5.4E-06 3.5E-31 7.0E-30 9.1E-12 7.4E-11 1.5E-25 2.1E-24 1.2E-31 3.1E-30
nucleolus 5.1E-09 3.2E-08 4.6E-06 2.5E-05 1.1E-10 7.2E-10 2.1E-15 2.1E-14 1.2E-11 9.2E-11
cytoplasm 1.00 0.74 0.0080 0.028 0.98 0.74 0.19 0.36 5.6E-12 5.0E-11
bud neck 0.38 0.59 0.0032 0.014 0.30 0.52 0.0067 0.026 7.6E-05 3.8E-04
spindle pole 0.01 0.05 0.00 0.01 0.16 0.33 0.00 0.01 0.00 0.01

It is well known that some cellular organelles play important roles in biological pro-

cesses. For example, mitochondria is the organelle where TCA cycle and oxidative

phosphorylation occur and is highly associated with aging. This motivates us to think
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about such a question: genes localized in which organelles are more likely to be affected

in the long-lived mutant strains? Large-scale analysis of protein localization has been

performed in S.cerevisiae, which enables us to investigate this problem [HFG+03]. As

shown in Table 4.6, we identified the significantly affected organelles. Our results indi-

cate that ER-located and vacuole-located proteins are positively affected, while proteins

located in mitochondria, nucleus or nucleolus are negatively affected in all of the long-

lived mutants.

The endoplasmic reticulum is part of the endomembrane system, which modifies

proteins, makes macromolecules, and transfers substances throughout the cell. In bud-

ding yeast cells, vacuoles are the storage compartments of amino acids and the detoxifi-

cation compartments. Under conditions of starvation, proteins are degraded in vacuoles,

which is called autophagy. The up-regulations of vacuole-located proteins may implies

that autophagy in the cells of these long-lived mutants is enhanced to maintain survival

in low nutrient conditions, such as SDC medium.

A dominant role for the mitochondria is the production of ATP as reflected by the

large number of proteins in the inner membrane for this task. This is done by oxi-

dizing the major products of glycolysis: pyruvate and NADH that are produced in the

cytosol. This process of cellular respiration, also called aerobic respiration, is depen-

dant on the presence of oxygen. When oxygen is limited the glycolytic products will

be metabolized by anaerobic respiration, a process that is independent of the mitochon-

dria. The production of ATP from glucose has an approximately 15 fold higher yield

during aerobic respiration compared to anaerobic respiration. Our analysis shows that

mitochondrial proteins tend to be down-regulated in the transcription level. This may

reflect a switch from aerobic respiration to anaerobic respiration for energy. This is con-

sistent with previous results from pathway analysis: the Glycolysis/Gluoconeogenesis

pathway is positively affected, whereas the TCA cycle and oxidative phosphorylation
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are negatively affected. Additionally, proteins localized in nucleus or nucleolus tend to

be down-regulated, which is also a reflection of metabolic rate decrease.

4.3.6 Significantly affected transcription factors in the long-lived

mutants

Table 4.7: Positively and Negatively affected transcription factors. Significant find-
ings (q-value≤0.01) are shown in bold.

Positively affected transcriptional factors

Transcription sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Factor p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value
CIN5 0.0082 0.074 6.9E-05 0.0019 0.0015 0.021 7.0E-06 3.2E-04 2.0E-04 0.0043
FHL1 0 0 3.2E-15 2.5E-13 0 0 0 0 1.00 0.79
HAP1 0.89 0.79 0.34 0.57 0.92 0.79 0.042 0.18 1.4E-05 5.7E-04
INO4 1.00 0.79 0.97 0.79 0.92 0.79 0.92 0.79 1.1E-04 0.0027
MBP1 0.29 0.53 0.051 0.20 3.0E-05 0.0011 0.099 0.29 0.11 0.31
MET31 0.11 0.32 6.4E-05 0.0019 0.0053 0.054 0.80 0.79 0.98 0.79
NRG1 0.62 0.79 8.4E-04 0.015 0.077 0.26 5.9E-04 0.011 1.8E-05 6.8E-04
RAP1 0 0 5.9E-10 3.4E-08 0 0 4.0E-13 2.6E-11 0.93 0.79
SUM1 0.88 0.79 0.17 0.40 0.045 0.19 0.073 0.25 4.8E-04 0.0093
SWI4 0.12 0.32 0.030 0.15 1.2E-04 0.0028 0.050 0.20 0.14 0.35
SWI5 0.0018 0.024 0.024 0.13 2.4E-04 0.0051 9.9E-04 0.016 0.24 0.49
SWI6 0.28 0.51 0.041 0.18 3.2E-05 0.0011 0.048 0.19 0.011 0.086
YAP5 0.0012 0.017 0.0035 0.043 7.9E-05 0.0020 0.0012 0.017 0.32 0.56
YAP6 0.039 0.18 1.1E-06 5.6E-05 9.6E-04 0.016 4.9E-05 0.0015 2.6E-04 0.0052

Negatively affected transcriptional factors

Transcription sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Factor p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value
ABF1 0.0012 0.048 1.2E-06 1.8E-04 2.0E-06 1.8E-04 1.1E-04 0.0063 0.0037 0.10
ARG80 0.0056 0.14 0.0055 0.14 2.0E-05 0.0013 0.013 0.23 0.31 0.79
GCN4 0.66 0.91 0.046 0.40 2.9E-08 7.8E-06 9.1E-06 6.9E-04 7.0E-10 3.8E-07
HAP4 1.8E-06 1.8E-04 6.8E-04 0.033 1.6E-06 1.8E-04 8.4E-04 0.037 0.68 0.91
INO4 1.3E-04 0.0067 0.034 0.33 0.076 0.47 0.076 0.47 1.00 0.91

In most cases, an external or internal signal will eventually be transmitted to one or a

set of transcription factors, and as a consequence gene expressions are change to respond

to the signal. If we can find out the transcription factors that cause the gene expression

changes in the long-lived mutants, it will be helpful to infer the underlying mechanism

of longevity. Unfortunately, gene expression in microarray data provides limited infor-

mation to detect the change of transcription factor activity. The reasons are as follows:

(1) The expression levels of transcription factors are relatively low. (2)The activities of
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transcription factor are prevalently regulated by post-translational modification, e.g. by

protein phosphorylation. As such, we apply an indirect strategy to find out the affected

transcription factors in these mutants by studying the expression change of genes reg-

ulated by those transcription factors. For a given transcription factor, if the expression

levels of its target genes are significantly up-regulated in comparison with the whole

transcriptome background, we conclude that the activity of this transcription factor is

enhanced. Conversely,if the expression levels of its target genes are significantly down-

regulated, we assume that the activity of this transcription factor is repressed. To deter-

mine the target gene set of a transcription factor, we use the TF-gene binding information

provided by the ChIP-Chip data. Large scale ChIP-Chip experiments have carried out

to systematically identify the binding sites of 203 transcription factors in S. cerevisiae

[HGL+04]. Table 4.7 shows the transcription factors that are significantly activated or

inactivated in various comparisons. Note that FHL1 and RAP1 are significantly acti-

vated in all the 4 mutants: sch94, ras24, tor14 and sch9sir24, relative to wild

type. This is consistent with what we expect, because we know that RAP1 and FHL1

are responsible for the regulation of ribosomal protein genes. In addition, we find that

SUM1 is significantly activated in sch9sir24 with respect to sch94. Previous studies

have shown that SUM1 is a transcriptional repressor required for repression of middle

sporulation-specific genes during mitosis; and that a dominant mutation of SUM1 is

able to suppress the silencing defects of SIR2 mutations [LR91, XPGD+99, FGB+05].

So the activation of SUM1, in sch9sir24 relative to sch94, may reflect a feedback in

response to Sir2 deletion.
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Table 4.8: Motifs enriched in up-regulated genes.Significant findings (q-value≤0.01)
are shown in bold.

Transcription sch9∆/wt ras∆/wt tor∆/wt sch9sir2∆/wt sch9sir2∆/sch9∆

Consensus Sequence
Factor p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value

RRTCACGTG- CBF1 0.36 0.24 4.2E-05 0.0028 0.13 0.14 0.10 0.12 0.64 0.33
RTGT-YGGRTG FHL1 9.3E-04 0.012 0.0042 0.024 1.7E-06 3.2E-04 4.2E-04 0.0074 0.42 0.26
AWAGGGAT GIS1 5.3E-05 0.0028 2.8E-04 0.0059 0.058 0.088 1.3E-05 0.0012 0.16 0.15
AMAA-TGTGG MET4 0.12 0.13 8.4E-06 9.5E-04 0.67 0.34 0.056 0.086 0.13 0.14
CGCATMCCCCAC MIG1 0.022 0.054 4.9E-04 0.0083 0.036 0.068 8.3E-04 0.011 0.082 0.11
AGGGG MSN2/4 1.3E-06 3.2E-04 1.1E-04 0.0038 5.6E-05 0.0028 1.4E-06 3.2E-04 0.16 0.15
GY–TSKCACGTG-G PHO4 0.0024 0.018 5.0E-05 0.0028 0.0016 0.016 0.0075 0.030 0.61 0.33
G-RGGGG-GGGG STRE 0.0014 0.015 0.045 0.077 0.0012 0.014 4.4E-04 0.0076 0.058 0.088
RYGWCASWAAW SUM1 0.11 0.13 2.0E-04 0.0051 0.0050 0.026 0.0057 0.027 0.0011 0.014
ACCYT-AGGTT ZAP1 0.30 0.21 8.7E-04 0.012 0.56 0.31 2.5E-04 0.0057 5.5E-05 0.0028

4.3.7 Significantly enriched motifs in promoter regions of differen-

tially expressed genes

Although the transcription factor analysis based on ChIP-chip data provides us some

information about transcriptional regulation in these long-lived mutants, it has the fol-

lowing limitations: (1)The ChIP-chip experiments are performed using yeast cells at

log-phase in YPD (Yeast Peptone Dextrose) medium. However, our microarray experi-

ments are carried out using yeast cells collected at day 2.5 with SDC (Synthetic Dextrose

Complete) as medium. It is known that some transcription factors regulate different sets

of target genes in different cell stages or different conditions. So it may be inappropriate

to determine the target gene sets for some transcription factors according to the available

Chip-Chip data. (2) The binding information for some transcription factors are missed

in the ChIP-Chip data. For example, it has been known that RAS2/CYR1/PKA, TOR1

and SCH9 activate several transcription factors, such as MSN2/4 and GIS1. These tran-

scription factors regulate the expression of STRE/PDS controlled genes, in which many

are stress response genes [Lon03, REM+05]. However, the binding information for

GIS1 protein is not available in ChIP-chip data.

To overcome these limitations, we apply a systematic in-silicon analysis to identify

the motifs that are significantly enriched in the up-regulated or down-regulated gene set

for each mutant. Beer et al. identified 666 non-redundant motifs from 800bp upstream
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sequences of all genes in S.cerevisiae [BT04]. Among these motifs, 51 have known

binding transcription factors. To find out the transcription factors that are associated

with differentially expressed genes in sch94, ras24, tor14 and sch9sir24 mutants,

we analyze the enrichment of motifs in both up-regulated and down-regulated genes

in each mutant. Our results show that there is no motif enriched in the down-regulated

gene set for all the comparisons: sch94/wt,ras24/wt, tor14/wt, sch9sir24/wt and

sch9sir24/sch94. Whereas in the up-regulated gene sets, we find some significantly

enriched motifs as shown in Table 4.8. It is notable that the motif bound by Gis1 is

enriched in sch94/wt, ras24/wt, sch9sir24/wt comparisons, and MSN2/4a bind-

ing motif is enriched in sch94/wt, ras24/wt, tor14/wt and sch9sir24/wt com-

parisons. These results are consistent with previous knowledge about MSN2/4. Both

MSN2 and MSN4 are repressed by PKA, which is activated by Ras2 and Tor1 pro-

tein. Also we know that GIS1 is activated by glucose-repressible protein kinase RIM15,

whose activity is inhibited by both PKA and SCH9 kinase [PDC+03]. Therefore the

mechanism of life span extension of sch94, ras24, tor14 and sch9sir24 can at least

partially be explained by the activation of MSN2/4 and/or GIS1 in these mutants.

It should be noted that both MSN2 and MSN4 are condition altered transcription

factors according to Harbison et al’s paper [HGL+04]. Namely, they bind to different

sets of target genes in different conditions. Since the medium and cell phase used in our

study are different from those used in the ChIP-Chip experiments, we do not find the

activation of MSN2 or MSN4 using the ChIP-Chip based method. But we detect the

enrichment of MSN2/4 binding site in promoter regions of the up-regulated genes using

the motif analysis.
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4.4 Conclusions and discussions

4.4.1 Energy switch

Figure 4.4: Box-plots of log ratios in the long-lived mutants. (A) sch94/wt; (B)
ras24/wt; (C) sch9sir24/wt; (D) tor14/wt. ALL- all genes; GLY- Glycoly-
sis/Gluconeogenesis; TCA- citric acid cycle; OXP- oxidative phosphorylation; ATP-
ATP generation.

In the long-lived mutants, genes involved in Glycolysis/Gluconeogenesis tend to be

up-regulated; and genes that participate in TCA cycle and oxidative phosphorylation
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tend to be down-regulated. This interesting phenomenon is observed consistently in all

the four long-lived mutants and supported by both GO and pathway analysis as shown

in Figure 4.4. On one hand, the up-regulation of Glycolysis/Gluconeogenesis related

genes imply that cells from the mutants consume the carbon sources in a more efficient

and economical manner compared with the wild type. The change may be achieved

through a mechanism similar to the one in CR. In consistent with this hypothesis, a

recent study shows that calorie restriction of tor14 or sch94 cells failed to further

increase of the life span [KPS+05]. On the other hand, the down-regulation of TCA

cycle and oxidative phosphorylation related genes indicates that mutant cells switch to

alternative energy pathways, possibly glycolysis, for energy. These pathways depend

less on TCA cycle and oxidative phosphorylation and consume less O2. Consequently,

it may also produce less ROS in comparison with the wild type cells.

Rea et al. proposed a metabolic model to describe the “Energy switch” hypothesis

for longevity mutants in C.elegans [RJ03]. According to their hypothesis, the relative

balance between TCA based mitochondrial-dependent metabolism and alternative path-

ways that do not involve the electron transport chain or are independent of the mitochon-

dria may determine the overall oxidant burden and hence the life span. In C.elegans,

alternative energy pathways include malate dismutation. Our results indicate that the

“energy switch” may be used to explain the long-lived mutations in S.cerevisiae. In

sch94, tor14, ras24, and sch9sir24, the alternative energy pathway is likely to be

the glycolysis pathway that occurs in the cytosol. The energy switch in these long-lived

mutants, together with other effects, e.g. low metabolic rate and enhanced stress resis-

tance, may play important roles in life span extension.
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4.4.2 Stress resistance

Deletion of RAS2 or SCH9 increases the stress resistance of yeast cells. MSN2/MSN4

and SOD2 are required for longevity extension in ras24, which suggests that

these stress response genes play important roles in longevity [LGV96, Lon03,

FLM+03]. Similarly, the life span extension by SCH9 deletion requires RIM15 but

Figure 4.5: Sch9 and TOR signalling are subject to cAMP-gating in yeast. GTF stands
for general transcription complex. Arrows and bars refer to positive and negative interac-
tions. Dashed lines refer to potential cross-regulation. The figure is copied from Roosen
et al. (Molecular Microbiology, Vol.55, 862-880) with small revisions.

134



not MSN2/MSN4 [FPP+01]. Our motif analysis suggests that two transcription fac-

tors, MSN2/MSN4 and GIS1, may function downstream of the pathway to regulate

the expression of stress response genes. As shown in Table 4.8, the motifs bound by

MSN2/MSN4 are significantly enriched in the up-regulated genes from all the four long-

lived mutants; the motifs bound by GIS1 are significantly enriched in the up-regulated

genes from all mutants except tor14 (the p-value is 0.058). Our results support the

model proposed by Roosen et al. [REM+05]. As shown in Figure 4.5, a main gatekeeper,

the protein kinase PKA, switches on or off the activities and signals transmitted through

primary pathways such as SCH9 and TOR. SCH9 positively controls PDS-driven gene

expression mainly via GIS1 and RIM15. TOR and PKA control STRE-driven gene

expression mainly via MSN2/4 and RIM15. But cross-talks exist between the two path-

ways. Stress response genes, i.g. SOD2, facilitate the removal of the endogenous ROS,

and enhance the stability of genome and mitochondria DNA. All these effects play pos-

itive roles in longevity.

4.4.3 Mitochondria and ageing

It has been 50 years since Harman first proposed the ”free radical theory” of

aging[Har56]. According to this theory, reactive oxygen species (ROS) damage macro-

molecules and thereby accelerate ageing. The majority of cellular ROS (approximately

90%) is generated in mitochondria as a byproduct of oxidative phosphorylation dur-

ing respiration[BNF05]. A number of mutation affecting respiration have been found

to increase life span, and at least some of them may achieve this by decreasing ROS

levels[Ken05]. We find that many of the down-regulated genes encode mitochondrial

proteins, and the expression levels of genes that encode proteins localized in mitochon-

dria tend to be negatively affected in the long-lived mutants. Consistently, in these

mutants, TCA and oxidative phosphorylation are negatively affected, both of which
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occur in the mitochondria. As a consequence, respiration is reduced to some extent and

thereby less ROS are produced. Our results suggest the importance of mitochondria in

yeast ageing.

4.4.4 Low metabolic rate

Both the GO and the pathway analysis imply a low metabolic rate in the long-lived

mutants. The basal transcription and translation are reduced by some extent. Cells

with mutants may survive in a more economical mode, which consumes less ATP and

possibly produces less harmful byproducts, such as ROS. As known, various organisms,

including yeast, live with low metabolic rate under CR conditions. The metabolic rate

reduction in the long-lived mutants with respect to the wild type again implies the strong

association of SCH9, TOR1 and RAS2 with CR.

4.4.5 Future works

In the future, we may study the gene expression in these mutants with a time course

experiment design. The time course gene expression data provides more abundant infor-

mation to infer the regulatory network during ageing process. It may help us to know

which phase is important for longevity. In C.elegants, treating worms with daf-2 RNAi

from the time of hatching extends life span and delays reproduction, but treating them

when they are young adults extends life span to the same extent with little or no effect on

reproduction [DCK02]. This indicates that genes may function differently in different

stages. The time course experiments are able to provide information to achieve more

accurate and detail understanding about function of the ageing related genes.

In addition, we can study the interaction effects of ageing related genes. For exam-

ple, we can survey the double mutants of Fob1 or Sir2 with Sch9, Tor1, Ras2 etc. This
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will enable us to know whether these genes function independently or coordinately to

change life span.
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gron. Variance stabilization applied to microarray data calibration and to
the quantification of differential expression. Bioinformatics, 18:96–104,
2002.

[HLM+01] Q. Huang, D. Liu, P. Majewski, L. C. Schulte, J. M. Korn, R. A. Young,
E. S. Lander, and N.Hacohen. The plasticity of dendritic cell responses to
pathogens and their components. Science, 294:870–875, 2001.

[IAdC+04] D. K. Ingram, R. M. Anson, R. de Cabo, J. Mamczarz ADN M. Zhu,
J. Mattison, M. A. Lane, and G. S. Roth. Development of calorie restric-
tion mimetics as a prolongevity strategy. Ann N Y Acad Sci, 1019:412–
423, 2004.

[IBC+03] R. A. Irizarry, B. Hobbs B, F. Collin, Y. D. Beazer-Barclay, K. J. Antonel-
lis, and T. P. Speed U. Scherf. Exploration, normalization, and sum-
maries of high density oligonucleotide array probe level data. Biostatis-
tics, 4:249–264, 2003.

[KCM02] T. Kepler, L. Crosby, and K. Morgan. Normalization and analysis of DNA
microarray data by self-consistensy and local regression. Genome Biol-
ogy, 3:1–12, 2002.

[Ken05] C. Kenyon. The plasticity of aging: insight from long-lived mutants. Cell,
120:449–460, 2005.

[KG03] J. Koubova and L. Guarente. How does calorie restriction work? Genes
Dev, 17:313–321, 2003.

[Kir88] T. B. Kirkwood. The nature and causes of ageing. Ciba Found Symp,
134:193–207, 1988.

[Kir92] T. B. Kirkwood. Comparative life spans of species: why do species have
the life spans they do? Am J Clin Nutr, 55:1191S–1195S, 1992.

[Kir02] T. B. Kirkwood. Evolution of ageing. Mech Ageing Dev, 123:737–745,
2002.

[KK05] M. Kaeberlein and B. K. Kennedy. Large-scale identification in yeast of
conserved ageing genes. Mech Ageing Dev, 126:17–21, 2005.

142



[KKFK04a] M. Kaeberlein, K. T. Kirkland, S. Fields, and B. K. Kennedy. Genes
determining yeast replicative life span in a long-lived genetic background.
Mech Ageing Dev, 126:491–504, 2004.

[KKFK04b] M. Kaeberlein, K. T. Kirkland, S. Fields, and B. K. Kennedy. Sir2-
independent life span extension. PLOS BIOLOGY, 2:e296, 2004.

[KPS+05] M. Kaeberlein, R. W. Powers, K. K. Steffen, E. A. Westman, D. Hu,
N. Dang, E. O. Kerr, K. T. Kirkland, S. Fields, and B. K. Kennedy. Regu-
lation of yeast replicative life span by tor and sch9 in response to nutrients.
Science, 310:1193–1196, 2005.

[KSH+06] M. Kaeberlein, K. K. Steffen, D. Hu, N. Dang, E. O. Kerr, M. Tsuchiya,
S. Fields, and B. K. Kennedy. Comment on ”hst2 mediates sir2-
independent life-span extension by calorie restriction”. Science,
312:1312, 2006.

[KSK05] B. K. Kennedy, E. D. Smith, and M. Kaeberlein. The enigmatic role of
sir2 in aging. Cell, 123:548–550, 2005.

[KWT+02] T. Kohler, S. Wesche, N. Taheri, G. H. Braus, and H. U. Mosch. Dual role
of the saccharomyces cerevisiae tea/atts family transcription factor tec1p
in regulation of gene expression and cellular development. Eukaryot. Cell,
1:673–686, 2002.
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