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Abstract

This thesis consists of three parts, reflecting three levels of Microarray data analysis.

In the first part, we introduce a new normalization method for Affymetrix oligonu-
cleotide based arrays. Our perspective is to find a transformation that matches the distri-
butions of hybridization levels of those probes corresponding to undifferentiated genes
between arrays. We address two important issues. First, array-specific spatial patterns
exist due to uneven hybridization and measurement process. Second, in some cases a
substantially large portion of genes are differentially expressed between a target and
a reference array. For the purpose of normalization we need to identify a subset that
excludes those probes corresponding to differentially expressed genes and abnormal
probes due to experimental variation. Least trimmed squares (LTS) is a natural choice
to achieve this goal. Substantial differentiation is protected in LTS by setting an appro-
priate trimming fraction. To take into account any spatial pattern of hybridization, we
divide each array into sub-arrays and normalize probe intensities within each sub-array.
We illustrate the problem and solution through an Affymetrix spike-in data set with
defined perturbation and a data set of primate brain expression.

In the second part, we describe a novel method to identify substantially perturbed
genes in the treatment/control time course data sets. It is often difficult to compare
expression patterns of a gene of two time courses for the following reasons: (1) the

number of sampling time points may be different or hard to be aligned between the
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treatment and the control time courses; (2) estimation of the function that describes the
expression of a gene in a time course is difficult and error-prone due to the limited num-
ber of time points. We propose a novel method to identify the differentially expressed
genes between two time courses which avoids direct comparison of gene expression
patterns of the two time courses. This method does not require alignment between the
two time courses to be compared. Instead of attempting to “align” and compare the
two time courses directly, we first convert the treatment and control time courses into
two neighborhood systems that reflect the underlying relationships between genes. We
then identify the differentially expressed genes by comparing the two gene relationship
networks from the two neighborhood systems. To verify our method, we apply it to sev-
eral treatment-control time course data sets. The results are consistent with the previous
results and also give some new biologically meaningful findings.

In the third part, we describe our integrative analysis of Microarray data from long-
lived yeast mutants. To understand gene expression change in these mutants from a sys-
tematic perspective, we combine Microarray data with many other data sources, such
as literatures, Gene Ontology, KEGG, and so on. Our results show that these long-
lived mutants share some common features in gene expression changes. Gene cate-
gories involved in basal transcription, translation and ion transportation tend to be down-
regulated. The glycolysis/gluconeogenisis pathway is significantly activated, whereas
the oxidative phosphorylation pathway and the citric acid cycle pathway are somehow
repressed. These findings may shed light on the underlying mechanisms of longevity of

these mutants.
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Chapter 1

Introduction

1.1 Gene expression and Microarray technologies

In the world of bio-molecules, proteins play the key roles as structural components,
enzymes, antibodies, and so on. Genes in DNA molecules carry the encoding informa-
tion for proteins. The flow of this encoding information from genes to proteins involves
two stages: transcription and translation. As shown in Figure 1.1, in transcription, a
DNA segment that constitutes a gene in the DNA molecules is transcribed into a sin-
gle stranded sequence of RNA, called messenger RNA (mRNA). Then in translation,
the mRNA is translated into a sequence of amino acids which finally become a pro-
tein after some modifications. To study the biological system quantitatively, several
techniques have been developed to measure the expression levels of mRNAs and pro-
teins. These techniques include Western Blot, Enzyme-Linked ImmunoSorbent Assay
(ELISA), Mass Spectrometry (MS) and Protein Microarrays for protein expression mea-
suring and serial Analysis of Gene Expression (SAGE), Northern Blot, quantitative RT-
PCR, and DNA Microarrays for mRNA expression measuring. Although expression
levels for mRNA and proteins are both of interest in biological studies, this thesis will
focus on DNA Microarrays data.

To measure the expression levels of genes using the DNA Microarray techniques,
hundreds of thousands of DNA probes are immobilized on a small glass, plastic, or
nylon membrane which is called an array. These probes are designed to stand for certain

amount of genes. mRNAs from the sample cells are hybridized with the probes on the



array. So by measuring the intensity of the mRNAs hybridized with the probes, we can
have the expression levels of the genes that we’re interested in. This technique enables
us to measure the expression values for hundreds of thousands of genes simultaneously
so that we can observe the changes in genes’ expression systematically. Also with the
aid of the Microarray techniques, we are able to design more intricate experiments to
predict gene function, infer gene regulatory networks, understand disease mechanisms,

et al.
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Figure 1.1: A scheme of mRNA in gene transcription and protein translation. Picture is
copied from http://www.accessexcellence.org.



1.2 Types of Microarrays

There are a number of microarray technologies for large scale gene expression mea-
suring. Among them, cDNA arrays and oligonucleotide arrays are the most popular

approaches. Although they use the same principle, they differ in many aspects.

A. RNA Isolation : :
E. Imaging

Sample A Sample B

@ -:—}:J (Eﬁé:) . Sample A= B

Lo L+ ] g Sample A=R

* | Sample B> A
~
. , ®

B. cDNA Generation ®
C. Labeling of Probe

Reverse Transcriptase .

=l

LA 1 + - I et T —===

T Sy lﬂ""_\ I F -

D. Hybridization \ ;'.':*;-' 2 - 2
to Array S
—

feniea s

Figure 1.2: Illustration of cDNA array experiment. From http://www.fao.org.

In a typical cDNA array experiment, mRNAs from two different samples are
extracted and reverse-transcribed into cDNAs which are labeled with dyes of differ-
ent colors if they’re in different samples. Then equal amount of labeled cDNA samples
are mixed together and hybridized with the probes on the array. The probes are spotted
cDNA of hundreds of nucleotides in length. After the hybridization, a laser scanner

measures dye fluorescence of each color at a fine grid of pixels. Higher fluorescence



indicates higher amount of hybridized cDNA and hence higher gene expression in the
corresponding sample [SSDB95, DIB97]. The experiment procedure described above is
also illustrated in Figure 1.2. After the scanning, we typically have two intensities for
spotted cDNA of two colors and two intensities for the background of two colors. So
there’re at least four quantities for each probe on the cDNA array. Sometimes, these are
accompanied with quantities that measure the quality of the spot, e.g. the variability of
the pixel intensity. Since samples are labeled with different colors and hybridize com-
petitively to the same set of probes, the cDNA array is also called two-channel array.
The two channel array allows measurement of the relative gene expression in the two

samples, i.e. the ratios of the two colors for each spot.

PHARMACOGENOMICS
differential gene expressions @

cell
cultures

mRNAs

microarrrays

Figure 1.3: Illustration of oligonucleotide array experiment. From http://fig.cox.mi-
ami.edu



The oligonucleotide arrays are available commercially from several companies, such
as Affymetrix, [llumina, NimbleGen, Agilent et al. Although they use different tech-
niques, they have one thing in common: the short oligonucleotide sequences are used as
probes. For example, in Affymetrx array, each gene is represented by one or more probe
sets, each composed of 11-20 pairs of 25bps long oligonucleotide. Each pair consists
of a perfect match and a mismatch. The mismatch is created by changing the middle
(13th) base of the perfect match sequence to reduce the specific binding of mRNA for
that gene. The goal of mismatch is to control experimental variation and nonspecific
binding of other mRNAs with the probe [Aff01]. Unlike the two-channel cDNA array,
oligonucleotide array is often one-channel: mRNA from only one sample is prepared,
labeled with a fluorescent dye, and hybridized to the probes on an array. After the
hybridization, arrays are scanned, and images are produced and analyzed to obtain a
fluorescence intensity value for each probe. In the probe set level, the typical output for
a probe set includes two vectors of intensity readings, one for perfect matches and the
other for mismatches. The experiment procedure using oligonucleotide arrays is also

illustrated in Figure 1.3.

1.3 Microarray data analysis

Despite the high throughput and high efficiency of microarray technologies, high level
of noises and complex experimental artifacts are associated with microarray data, which
emphasizes the requirement for statistical and data analytic techniques for all stage of
experimentation. Microarray data analysis can roughly be classified into three levels:
low, middle, and high level, according to the stage of experimentation and involvement

of other data sources.



Low level of data analysis, also termed as signal extraction, includes image analysis,
gene filtering, background correction, probe level analysis and gene summarization for
oligonucleotide arrays, as well as between-array normalization and removal of artifacts
for comparisons across arrays. These kinds of data analysis are performed at the early
stage of microarray experimentation. For example, normalization and summarization
are often performed to obtain expression values of genes from raw data set collected
from Affymetrix gene chips. In Chapter 2, we will give a brief introduction to several
prevalent normalization methods as well as a new method we proposed for Affymetric
arrays, called Sub-Sub.

Middle level of data analysis includes selection of differentially expressed genes
between experimental conditions, clustering/classification of biological samples or
genes, construction of gene co-expression network, et al. For instance, in order to
understand the mechanism of a type of cancer, say lung cancer, we are interested in:
(1) what are the physiologically different between the cells in the tumors and in normal
lung tissues? (2) Which genes show expression change in the tumor cell compared with
normal cell? That is, we try to associate the physiological difference with gene expres-
sion changes so that we can shed light on the mechanism of lung cancer in a molecule
level. When two different conditions are considered, such as disease/non-disease, we
also denote one as treatment and the other as control. Differential expression between
treatment and control can be investigated from a static or temporal viewpoint. In a static
experiment design, snapshots of gene expression levels are taken without considering
the temporal effect. Whereas in a temporal experiment design, also called a time course
design, the gene expression across several time points are measured. To identify dif-
ferentially expressed genes in a static experiment design, a number of approaches have
been proposed, including the two-sample t-test (T-test), the Wilcoxon rank sum test

(WRST), significance analysis of microarrays (SAM) [TTCO1], and relative entropy



based method [YDFQOS5]. Several approaches have also developed to identify differ-
entially expresssed genes between time courses in a temporal experiment design. In
Chapter 3, we will first introduce some of them, then we will describe a novel method
we proposed, which is called MARD analysis.

High level of microarray data analysis includes those approaches that integrate
microarray data sets from different platforms or combine microarray data with other data
sources, such as Chip-Chip results, Gene Ontology information, pathway information,
and so on. Great success has been achieved in the past few years by performing high
level microarray data analysis. For example, Segal et al. presented an integrated analy-
sis of 1,975 published microarrays spanning 22 tumor types. They described expression
profiles in different tumors in terms of the behavior of modules, which are gene sets
that act in concert to carry out a specific function. Using a simple unified analysis, they
extracted modules and characterized gene-expression profiles in tumors as a combina-
tion of activated and deactivated modules. Activation of some modules was found to be
specific to particular types of tumor, whereas other modules were shared across a diverse
set of clinical conditions, which suggests the existence of common tumor progression
mechanisms [SFKRO04]. In another paper, Subramanian et al. described a method called
Gene Set Enrichment Analysis (GSEA) [STM*05]. This method focuses on gene sets
which are groups of genes that share common biological function, chromosomal loca-
tion, or regulation. Construction of gene sets is based on information collected from
literatures and other sources of data sets. In Chapter 4, we will also apply some inte-
grative analysis to our ageing project and show how the analysis exposes a common

mechanism for longevity in four long-lived yeast mutants.



Chapter 2

Sub-array normalization for

oligonucleotide array

The high density oligonucleotide array has been widely used in biological studies. Anal-
ysis of oligonucleotide array data includes several steps: image processing, background
correction, normalization, PM correction, and probe set summary. In this chapter, we
first describe the importance of normalization, and introduce several approaches avail-
able for oligonucleotide array normalization. Then we propose a novel normalization
method called Sub-Sub (sub-array normalization subject to differentiation). Our method
allows a substantial differentiation of genes between a target and a reference array. To
evaluate the performance of Sub-Sub normalization, we apply it to both simulated data

sets and real data sets.

2.1 Background

As one of the commercial standards, Affymetric GeneChips® uses 11-20 probe pairs,
which are short oligonucleotides of 25 bp, to represent each gene, and as a whole they are
called a probe set [Aff01, LDB"96]. Each probe pair consists of a perfect match (PM)
and a mismatch (MM) probe that differ only in the middle (13th) base. MM probes are
designed to measure the non-specific binding. Ideally, probes are arranged on a chip in
a random fashion. But in customized arrays, this is not always true. RNA samples are

prepared, labeled, and hybridized with arrays. Then arrays are scanned and images are



produced and analyzed to generate an intensity value for each probe. These intensities
represent how much hybridization occurred for each oligonucleotide. Up to now, each
probe is represented by an intensity value. In order to obtain the expression level for a
probe set, we need to combine the intensities of probes corresponding to it. This process
is what so called summarization.

In many of the applications of high density nucleotide arrays, the goal is to seek
the differentiation of mRNA expression among different samples. For example, the
identification of differentially expressed genes in tumor with respect to normal tissue
helps to understand the mechanism of cancers. The variations between samples that
are informative are referred to as “interesting variation”. However, the gene expression
levels measured by microarrays also include variations introduced during the experiment
processes: RNA extraction, fluorescence labeling, hybridization and scanning. These
variations are referred to as “obscuring variation” [ZKM™"05]. Direct comparison of
data from different arrays can lead to misleading results and incorrect conclusions due
to the “obscuring variation”. However, this effect will be alleviated if the arrays can
be appropriately normalized [DYCS02, IBCT03]. The purpose of normalization is to
minimize the “obscuring variation” between arrays so that the expression levels of genes
measured by different arrays are comparable. Therefore, normalization is one of the

critical steps for microarray data analysis.

2.2 Normalization approaches for oligonucleotide array

Affymetrix developed a normalization method called scaling normalization, which
scales the intensities so that each array has the same average intensity. It is performed
after summarization in the probe set level. In the probe level (before summariza-

tion), several normalization approaches for oligonucleotide arrays have been proposed.



Among these normalization methods, “constant” simply carries out scaling normaliza-
tion in the probe level [IBC*03]. The others can be roughly categorized into two classes.
The first class, including “loes” and “contrasts”, is based on M vs A methodology, which
achieves normalization of a target array against a reference array by correcting for non-
central and non-linear bias observed in M-A plot [BIApS03, Ast03]. The second class,
such as “quantiles” and “gspline” [BIApS03, WIJ*02], correct for the nonlinear bias
seen in Q-Q plot. In this section, we will introduce several normalization approaches

that are most frequently used for oligonucleotide arrays.

2.2.1 Loess normalization

This approach is proposed by Dudoit et al. [DYCS02] which is originally applied to
perform within slide normalization for the two color channels of cDNA array. It is based
on the M vs A methodology where M is the difference in log expression values and A
is the average of the log expression values. Bolstad et al. generalized this approach to
normalize probe intensities from two arrays [BIApS03]. The underlying rationale is that
very few genes will have different expressions in two arrays. So an M vs A plot for the
normalized data should have a point cloud centered around the M = 0 axis.

For any two arrays ¢ and j with probe k’s intensities x;¢ and ), where k =
1,--+,p, the M and A are defined as M; = log, (zxi/xrj) and A = log, (zxixy)).
Loess, a local regression method [Cle79], is used to fit a normalization curve to the M
vs A plot for the Ms and As of all probes. If the fitted M for probe & by the normalization
curve are M %> then the normalization adjustment can be formulated as M; = M, — M, k-
And the normalized probe intensities are given by x}i = 24%+Mi/2 and xj = 24 Mi2,
For a data set with more than two arrays, the normalization is carried out in a pairwise

manner. To do a within slide normalization, the two channels are treated as two arrays.
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2.2.2 Contrast normalization

This approach is first introduced by Astrand [Ast03]. It is also based on the M vs
A methodology, but this method transforms the data into a set of contrasts before the
normalization.

Suppose one has a data set with k arrays, where each array contains n probes.
Let the n x k matrix Y denote the probe intensities of these arrays. First the data
Y is transformed into a log scale and the basis is changed as the following: 7 =
[z, y1,-+ ,yr_1] = logY - M’', where M is an orthonormal & x k matrix called trans-
formation matrix. The first row of M is always the 1-vector times \/1/_k and then it
follows that the other rows are a set of orthonormal contrast. In the transformed basis,
a normalization curves is fit using loess for each of the n — 1 y; with respect to x. The
data is then adjusted by using a smooth transformation which adjusts the normalization
curve so that it lies along the horizontal. Data in the normalized state is obtained by

transforming back to the original basis and exponentiating.

2.2.3 Quantiles normalization

Quantile normalization was first introduced by Bolstad et al. in 2003 [BIApS03]. The
goal of the method is to achieve the same distribution of probe intensities for each array
in the data set. If two data vectors have the same distribution, the Q-Q plot of them
is a straight diagonal line. This concept can be extended to n dimensions: if all n data
vectors have the same distribution, then if we plot the quantiles of them in a » dimension
space, we’ll also get a straight diagonal line. Therefore, one could make a set of arrays
have the same distribution of intensities by projecting the points of the n dimensional

quantile plot onto the diagonal.
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In practice, this is simply achieved by taking the mean quantile and substituting the
value in the original data set by this mean quantile. To do this, one can use the following
algorithm where X is the n x k matrix of the original probe intensities(n probes and k

arrays):

1. Given k array each with n probes, form X of dimension n x k where each array

is a column
2. Sort each column of X to give X+

3. Take the means across each row of X,,; and assign this mean to each element in

/
sort

the row to get X

4. Get X, ormatizeq Y rearranging each column of X, to have the same ordering as

the original X

2.2.4 Qspline normalization

This approach is proposed by Workman et al. [WJJT02]. It fits a smoothing B-spline
between the quantiles of probe intensities on the array(x) and those on the reference
array (v). The splines are then used as intensity-dependent normalization functions on
the probe intensities of z. After the normalization, the probe intensities of all arrays
share the same distribution with the reference array. The reference array can be any

array in the data or the mean “array” calculated from multiple arrays.

2.2.5 Invariantset normalization

This approach was first used in the dChip software by Li et al. [LWOla, LWO1b]. The
normalization is based on a set of probes that belong to non-differentially expressed

genes. This set of probes is called “invariant set”. To identify the “invariant set”, an

12



iterative procedure is applied. Specifically, one starts with all » PM probe in an array. If
the probe’s proportion rank difference(absolute rank difference in two arrays divided by
n) is small enough, it is kept for the new set. In this way, a new set of probes is selected,
and the same procedure is applied to the new set iteratively, until the number of probes
in the new set does not decrease anymore. Then based on the invariant set, loess is used

to fit a normalization curve to relate the reference array to an array to be normalized.

2.3 Introduction to Sub-Sub normalization

The development of our normalization method, Sub-Sub (Sub-array normalization
subject to differentiation), was motivated by two important issues that must be con-
sidered in oligonucleotide array normalization: fraction of the differentially expressed
genes and spatial effect of the arrays. Consistently, the first “Sub” in “Sub-Sub” aims
to deal with the spatial effect by dividing the whole array into sub-arrays. The second
“Sub” refers to “subject to differentiation”, which means that our method allows for

large fraction of differentially expressed genes.

2.3.1 Differentiation fraction

Among all the existing normalization methods introduced above, most of them have
the following three assumptions about the data. First, most genes are not differentially
expressed; Second, the number of up-regulated genes roughly equals the number of
down-regulated genes; Third, the above two assumptions hold across the signal-intensity
range. However in the reality, these assumptions are not always true. So we should
consider normalization that is resistant to violation of these assumptions [BIApS03,

ZAZL01, WIIT02].
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When we compare two arrays in which a substantially large portion of genes are dif-
ferentially expressed, we need to identify a “base” subset for the purpose of normaliza-
tion. This subset should exclude those probes corresponding to differentially expressed
genes and abnormal probes due to experimental variation. A similar concept “invariant
set” has been defined in [SLEWO01, TOR*01, KCMO02]. To identify the base subset, we
use least trimmed squares (LTS) [RL87] which can estimate the transformation simul-
taneously. The substantially large portion of genes that are differentially expressed are
protected in LTS by setting an appropriate trimming fraction. The exact LTS solution is

computed by a fast and stable algorithm we developed recently [Li04].

2.3.2 Spatial pattern

Array-specific spatial patterns may exist due to uneven hybridization and measurement
process. For example, reagent flow during the washing procedure after hybridization
may be uneven; scanning may be non-uniform. We have observed different spatial
patterns from one array to another. To take this into account, we divide each array into
sub-arrays so that each of them consist of a few hundred probes. The probe intensities
are normalized within each sub-array. Other spatial normalization methods such as that
in [WJJT02] only consider the spatial effect in background. In comparison, we try
to adjust for spatial effect both in background and in scale. We show that match of
distribution at the array-level can be achieved by normalization at the sub-array level
to a great extent. In cDNA arrays, local subgrid normalization has been proposed by

[vKvT03].
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2.4 Methods

2.4.1 Statistical principle of normalization

Suppose we have two arrays: one reference and one target. Denote the measured fluores-
cence intensities from the target and reference arrays by {U;, V;} respectively. Denote
true concentrations of specific binding molecules by (Uj, ‘7j). Ideally, we expect that
Uj, V})=(l~]j, f/j). But in practice, measurement bias exists due to uncontrolled factors
so we need a normalization procedure to adjust measurement. Now let’s have another
look at normalization. Consider a system with ((7]- f/j) as input and (Uj;, Vj) as output.
Let h = (hy, hy) be the system function that accounts for all uncontrolled biological and

instrumental bias; namely,

Ui = h(Uj),
Vi = h(V)).

The goal is to reconstruct the input variables (0}-, f/j) based on the output variables
(Uj, Vj). It is a blind inversion problem [Li03], in which both input values and the
effective system are unknown. The general idea is to find a transformation that matches
the distributions of input and output. This leads us to the question: what is the joint
distribution of true concentrations (U s f/j)? First, let us assume that the target and
reference array are biologically undifferentiated. Then the differences between the target
and reference are purely caused by random variation and uncontrolled factors. In this
ideal case, it is reasonable to assume that the random variables {(U;,V;),j = 1,---})
are independent samples from a joint distribution ¥ whose density centers around the
straight line U = V, namely, E(V|U) = U. The average deviations from the straight
line measures the accuracy of the experiment. If the effective measurement system h is
not an identity one, then the distribution of the output, denoted by W, could be different

from ¥. An appropriate estimate h of the transformation should satisfy the following:

15



the distribution frl(\p) matches W, which centers around the line V = U. In other
words, the right transformation straightens out the distribution of W.
Next we consider the estimation problem. Roughly speaking, only the component
of hy relative to hs is estimable. Thus we let v = hy(?). In addition, we assume that h,
is a monotone function. Denote the inverse of h; by g, then we expect the following to
be valid.
E[VIUl=U, or E[V|g(U)]=g(U).

Proposition 1 Suppose the above equation is valid. Then g is the minimizer of

min; E(V —[(U))%

According to the well known fact of conditional expectation, E[V|g(U)] = ¢g(U) min-
imizes E[V — 1;(g((U))]* with respect to ;. Next write [;(g(U)) = (U). This fact
suggests that we estimate g by minimizing 3 (v; — g(u;))?. When necessary, we can

impose smoothness on g by appropriate parametric or non-parametric forms.

2.4.2 Differentiation fraction and undifferentiated probe set

Next we consider a more complicated situation. Suppose that a proportion A of all the
genes are differentially expressed while other genes are not except for random fluctua-
tions. Consequently, the distribution of the input is a mixture of two components. One
component consists of those undifferentiated genes, and its distribution is similar to \U'.
The other component consists of the differentially expressed genes and is denoted by I.
Although it is difficult to know the form of Fasa priori, its contribution to the input is
at most \. The distribution of the input variables (U, V;) is the mixture (1 — \) U +- AT
Under the system function h, ¥ and I are transformed respectively into distributions

denoted by W and I'; That is, ¥ = h(¥), ' = h(I"). This implies that the distribution of

the output (U;, V;) is (1 — X\) ¥ + AT. If we can separate the two components ¥ and T,
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then the transformation h of some specific form could be estimated from the knowledge

of U and V.

2.4.3 Spatial pattern and sub-arrays

Normalization can be carried out in combination with a stratification strategy. For
cDNA arrays, researchers have proposed to group spots according to the layout of array-
printing so that data within each group share a more similar bias pattern. And then
normalization is applied to each group. This is referred to as within-print-tip-group nor-
malization. On a high-density oligonucleotide array, tens of thousands of probes are laid
out on a chip. To take into account any plausible spatial variation in h, we divide each
chip into sub-arrays, or small squares, and carry out normalization for probes within
each sub-array. To get over any boundary effect, we allow sub-arrays to overlap. A
probe in a overlapping regions gets multiple adjusted values from sub-arrays it belongs

to, and we take their average.

2.4.4 Parameterization

Since each sub-array contains only a few hundred probes, we choose to parameterize
the function g by a simple linear function v + (3 u, in which the background « and scale

[ represent respectively uncontrolled additive and multiplicative effects.

2.4.5 Simple least trimmed squares

Our target solution consists of two parts: 1. identify the “base” subset of probes; 2.
estimate the parameters in the linear model. We adopt least trimmed squares to solve
the problem. Starting with a trimming fraction p, set h = [n(1 — p)] + 1. For any («, 3),

define r(«o, 3); = v; — (o + Bu;); Let H(, ) be a size-h index set that satisfies the
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following property: |r(c, 3);| < |r(a, B);], forany i € Hi, ) and j & H(, ). Then the

least trimmed squares estimate (LTS) minimizes

T
i€H(a,p)

The solution of LTS can be characterized by either the parameter («, 3) or the size-h
index set H. It is this dual form that we find it ideal for our purpose. Statistically,
LTS is a robust solution for regression problems. On one hand, it can achieve any
given breakdown value by setting a proper trimming fraction. On the other hand, it has
\/n-consistency and asymptotic normality under some conditions. In addition, the LTS
estimator is regression, scale, and affine equivariant [RL87]. Despite its good properties,
LTS has not been widely used because no practically good algorithm exists to implement
computation. Recently we developed a fast and stable algorithm to compute the exact
LTS solution to simple linear problems [Li04]. On an average desktop PC, it solves LTS
for a data set with several thousand points in two seconds.

A LTS solution naturally associates with a size-h index set. By setting a proper
trimming fraction p, we expect the corresponding size-h set is a subset of the undiffer-
entiated probes explained earlier. Obviously, the trimming fraction p should be larger

than the differentiation fraction \.

2.4.6 Multiple arrays and reference

In the case of multiple arrays, the strategy of normalization hinges on the selection of
reference. In some experiments, a master reference can be defined. For example, the
time zero array can be set as a reference in a time course experiment. In experiments
of comparing tumor and normal tissues, the normal sample can serve as a reference. In

other cases, the median array or mean array are options for references. Another strategy

18



is: first, randomly choose two arrays, one reference and one target, for normalization;
use the normalized target array from the last normalization as the reference for the next
normalization; iterate this procedure until all arrays have been normalized once; and
repeat this loop for several runs. Hereafter we adopt the median polishing method in
RMA [IBC*03] to summarize expression levels from multiple arrays.

The direct result of normalization is the calibration of relative expression levels of an
array with respect to a reference. Suppose we have an ideal reference array with known
concentrations of binding molecules for all probes. Then in theory, we can measure the
absolute expression values of any sample as long as we can normalize its hybridization

arrays with the reference.

2.4.7 Implementation and Sub-Sub normalization

We have developed a module to implement the normalization method describe above,
referred as SUB-SUB normalization. The core code is written in C, and we have an
interfaces with Bioconductor in R [Net, Bio]. The input of this program is a set of
Affymetrix CEL files and output are their CEL files after normalization. Three param-
eters need to be specified: sub-array size, overlapping size and trimming fraction. The
sub-array size specified the size of the sliding window. The overlapping size controls
the smoothness of window-sliding. Trimming fraction specifies the break down value in
LTS. The normalized CEL files generated by the program could be directly read in by
the “affy” package in Bioconductor for further processing such as PM correction, sum-
marization and so on. An experiment with an expected higher differentiation fraction

should be normalized with a higher trimming fraction.
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2.5 [Evaluation of Sub-Sub on Spike-in data set

2.5.1 Affymetrix Spike-in data set

Affymetrix Spike-in data set provides a standard to evaluate the performance and
effectiveness of a normalization method. This data set includes 14 groups of
arrays, and each of them consists of 4 replicates, from Affymetrix HG-U95 chips.
Fourteen genes are spiked-in on these arrays at given concentrations and in a
cyclic fashion known as the Latin square design. The data are available from
http://www.affymetrix.com/support/technical/sample_data/datasets.affx. Out of the 14
groups of arrays, we chose two groups. The first group contains four arrays:
1521m99hpp _av06, 1521n99%hpp_av06, 1521099%hpp_av06 and 1521p99hpp_av06. The
second group also contains four arrays: [1521q99hpp_av06, 1521r99hpp_av06,
1521s99hpp_av06 and 1521t99%hpp_av06. Later we will abbreviate these arrays by M,
N, O, P, Q, R, S, T. As a result, the concentrations of thirteen spiked-in genes are two-
fold lower in the second group than the first group. The concentrations of the remaining
spike-in gene are respectively 0 and 1024 in the two groups. In addition, two other genes
are so controlled that their concentrations are also two-fold lower in the second group
compared to the first one.

As we have claimed, one issue that Sub-Sub aims to deal with is the large differen-
tiation fraction between RNA samples. To test the robustness of Sub-Sub normalization
when there’s a substantial differentiation fraction, we generate an artificial data set with
relatively large fraction of differentiation by perturbing the HG-U95 spike-in data set.
Namely, we randomly choose 20% genes and increase their corresponding probe inten-
sities by 2.5 fold in the four arrays in the second group. We also generate other two

perturbed Spike-in data sets with 1.5 and 1.25 fold increase.
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2.5.2 Parameter selection

Before the normalization, three parameters need to be specified: sub-array size, over-
lapping size and trimming fraction. The sub-array size specified the size of the sliding
window. The overlapping size controls the smoothness of window-sliding. Trimming
fraction specifies the break down value in LTS. We will describe the effect of the three

parameters one by one in the following context.

Sub-array size

Effect of sub-array size on Sub-Sub normalization is shown in Figure 2.1. We per-
form Sub-Sub normalization using different sub-array size that vary from 20 x 20 to
80 x 80. Overlapping size and trimming fraction are fixed to 0 and 80%, respectively.
To make the results comparable, the same PM correction (PM only) and summariza-
tion (medianpolish) method are used after normalization. To do this, the “affy” package
in Bioconductor is used. In Figure 2.1, M-A plots (log ratios of expressions between the
two groups versus the abundance) are summarized from the eight arrays. For a given
pair of arrays, each from a group, the M and A values for all probe sets are calculated.
Pairwise comparison results in 16 M and A values for each probe set. These 16 M and
A values are averaged and then used for M-A plot shown in Figure 2.1. Note that we
will always use PM correction and medianpolish summarization throughout this chapter
unless specified. As can be seen in Figure 2.1, the effect of sub-array size on Sub-Sub
normalization is small. Sub-array sizes ranging from 20 x 20 to 80 x 80 result in similar
M-A plots. In general, the smaller the sub-array size is, the more accurately we can
capture the spatial bias while the less number of probes are left for estimation of linear
relation. Thus, we need to trade off between bias and variation. From our experiments, a
sub-array size from 20 x 20 to 80 x 80 works well for Affymetrix HG-U95 and HG-U133

chips.

21



© ©
o o
< <
o o
[\ N
o o
N N
o o
1 1
© ©
o o
< <
o o
N N
o o
N N
o o
1 1
I I I I I I I I I I
6 8 10 12 14 6 8 10 12 14

Figure 2.1: Effect of sub-array size on Sub-Sub normalization. M-A plots of Spike-in
data are shown after Sub-Sub normalization:(A) sub-array size is 80 x 80; (B) sub-array
size is 60 x 60; (C) sub-array size is 40 x 40; (D) sub-array size is 20 x 20; In all the
cases, overlapping sizes are set to 0 and trimming fractions are set to 20%. Spike-in
genes are shown in red.

Overlapping size

Effect of overlapping size on Sub-Sub normalization is shown in Figure 2.2. We fix
the sub-array size and trimming fraction to be 20 x 20 and 20% respectively. Different
overlapping sizes (0, 5, 10, 15) are used for normalization. As shown, we found the
effect of the overlapping size on normalization is also small. Our recommendation is

half of the sub-array size. For example, it is 10 if sub-array size is 20x20. According to
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Figure 2.2: Effect of overlapping size on Sub-Sub normalization. M-A plots of Spike-in
data are shown after Sub-Sub normalization: (A) overlapping size is 0; (B) overlapping
size 1s 5; (C) overlapping size is 10; (D) overlapping size is 15. In all the cases, sub-
array sizes are set to 20 x 20 and trimming fractions are set to 20%. Spike-in genes are
shown in red.

our experience, it can even be set to 0 (no overlapping between adjacent sub-arrays) to

speed up computation without obvious changing the normalization.

Trimming fraction

Effect of trimming fraction on Sub-Sub normalization is shown in Figure 2.3. A trim-

ming fraction ranging from 0O to 30% is used while sub-array size and overlapping size
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Figure 2.3: Effect of trimming fraction on Sub-Sub normalization. M-A plots of Spike-
in data are shown after Sub-Sub normalization:(A) trimming fraction is 0; (B) trimming
fraction is 10%; (C) trimming fraction is 20%; (D) trimming fraction is 30%. In all the
cases, sub-array sizes are set to 20 x 20 and overlapping sizes are set to 10. Spike-in
genes are shown in red.

are fix to 20 x 20 and 10, respectively. As can be seen in Figure 2.3, when the trim-
ming fraction is 0, an obvious nonlinear pattern can be observed in the M-A plot, which
gives a points cloud with a “banana” shape (Figure 2.3A). In this case, the LTS degener-
ates into an ordinary linear regression method, which is not robust to outliers any more.
As a consequence, accurate estimation of linear relations in each sub-array can not be
guaranteed. When we gradually increase the trimming fraction, the nonlinear pattern is

removed from the M-A plots(see 2.3B-D). The selection of trimming fraction should
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depend on which samples to be compared in the experiments and the quality of microar-
ray data. For an experiment with 20% differentiated genes, we should set a trimming
fraction larger than 20%. Again we need a trade off between robustness and accuracy
when selecting the trimming fraction. On one hand, to avoid break-down of LTS, we
prefer large trimming fractions. On the other hand, we want to keep as many probes as
possible to achieve accurate estimates of a and 3. Without a priori, we can try different
trimming fractions and look for a stable solution. We recommend 50% to be the starting
value for the try.

In the Affymetrix Spike-in data set, the majority of genes have constant expression
levels across all the arrays. Trimming fraction is mainly used to protect the ill hybridized
probes rather than probes corresponding to differentially expressed genes. Thus a rela-
tively small trimming fraction of 20% is enough to achieve a good result.

It should be noted that the effects of the three parameters: sub-array size, overlap-
ping size and trimming fraction, are under separate investigation in above sections. Also
we have tried many combinations of these three parameters on several data sets. In some
reasonable range, the interaction between the parameters is negligible. Our results indi-
cate that the trimming fraction matters substantially to the normalization. The selection
of sub-array size is relatively flexible. Effective normalization could be expected for
a large range of sub-array size such as from 10 x 10 to 80 x 80. On the other hand,
dividing array into sub-arrays is required to deal with the spatial effect. As a matter of
fact, stratification by spatial neighborhood and selection of break down value in LTS do
contribute a great deal to the normalization. Overlapping size has a little contribution in

this data set.
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Figure 2.4: Box-plots of log transformed expression measurements for the 8 arrays from
Spike-in data set in probe and probe set level before and after Sub-Sub normalization.
(A) box-plot of probe intensities before normalization. (B) box-plot of probe intensi-
ties after Sub-Sub normalization. (C) box-plot of probe set expression values before
normalization. (B) box-plot of probe set expression values after Sub-Sub normalization.

2.5.3 Global assessment of normalization

Figure 2.4A and 2.4B show the box plots of log transformed probe intensities before and
after Sub-Sub normalization, respectively. Before normalization, the probe intensities
from the eight arrays are different with each other. For example, the probe intensities
from the 6th array are generally higher than those from other arrays. Obviously, this
is an artificial result caused by “obscuring ™ variation between arrays, since we know
that expression levels of the majority of genes are the same on the eight arrays except

for the 14 spike-in genes. After Sub-Sub normalization, all the arrays have almost the

26



same median of intensities. That is, the “obscuring” variation between arrays has been
significantly reduced so that expression levels after the normalization can be compared
between different arrays. The effectiveness of Sub-Sub normalization to reduce “obscur-

ing” normalization is also shown in the probe set level (see Figure 2.4C and 2.4D).

(A) (B)

Figure 2.5: Distribution of probe intensities on the 8 arrays from Spike-in data before
(A) and after (B) Sub-Sub normalization.

The distribution of probe intensities before and after Sub-Sub normalization for each
array are shown in Figure 2.5. The probe intensities from the eight arrays have different
distributions before normalization (see Figure 2.5A). Sub-Sub normalization results in
similar distributions for probe intensities from all arrays. Although the Sub-Sub normal-
ization doesn’t attempt to match the marginal distributions purposely as the “quantile”
normalization does, it does achieve similar marginal distributions between arrays.

The effectiveness of Sub-Sub normalization on the Spike-in data set is also revealed
by the M-A plots. Figure 2.6A and 2.6B show the M-A plots before and after the Sub-
Sub normalization, respectively. Sub-Sub normalization removes the non-linear pattern
seen in the M-A plot. After Sub-Sub normalization, the point cloud centers around the

horizontal M = 0, which is what we expect to achieve by normalization.
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Figure 2.6: M-A plots for the Spike-in data set before (A) and after (B) Sub-Sub nor-
malization.

2.5.4 Detection of spatial patterns

We then investigate the existence of spatial pattern. The HG-U95 chips have 640x640
spots on them. We divided each array into sub-arrays with a size of 20x20. We run
simple LTS regression on the target with respect to the reference for each sub-array.
This results in an intercept matrix and a slope matrix of size 32x32, representing the
spatial difference between target and reference in background and scale. We first take
Array M as the common reference. In Figure 2.7, the slope matrices of Array P and
M are shown in the subplots at top left and top right respectively. Their histograms
are shown in the subplots at bottom left and bottom right. Two quite different patterns
are observed. Similar phenomenon exists in patterns of .. The key observation is that
spatial patterns are array-specific and unpredictable to a great extent. This justifies the

need of adaptive normalization.
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Figure 2.7: The slope matrices of two arrays show different spatial patterns in scale.
The common reference is Array M. (A) Array P versus M; (B) Array N versus M. Their
histograms are shown at bottom in (C) and (D) correspondingly.

2.5.5 Robustness to large differentiation fraction

As we have mentioned, one of the motivations to design Sub-Sub normalization is to
deal with the differentiation of genes between samples. Sub-Sub normalization protects

substantial differentiation genes by selecting an appropriate trimming fraction in LTS.
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To test this, we generate several artificial data sets with relatively large fraction of differ-
entiation by perturbing the Affymetrix HG-U95 Spike-in data set. We randomly choose
20% genes and increase their corresponding probe intensities by n fold(n=2.5, 1.5, and
1.25) in the four arrays of the second group. We then run SUB-SUB normalization on
the perturbed data set with various trimming fractions. The results are shown in Figure
?? for four trimming fractions, 30%, 20%, 10%, and 0%. The normalization is satisfac-
tory when the trimming fraction is less than 20% (see Figure 2.8A and 2.8B). When the
trimming fraction is larger than 20%, the real differentiation fraction, Sub-Sub does not
achieve a good normalization as revealed by the "banana” shaped point cloud in the M-
A plot (see Figure 2.8). Again, this suggests the importance of choosing an appropriate
trimming fraction for LTS.

We have also tried the other two perturbed Spike-in data set with 1.5 and 1.25 fold
up-regulation for 20% randomly choose genes. Similar results are obtained as shown in
Figure 2.9. These results indicate that Sub-Sub normalization is effective for data sets

with large differentiation fractions as long as an appropriate trimming fraction is chosen.

2.6 Evaluation of Sub-Sub on real data sets

2.6.1 Microarray data sets
Yeast sir2/\/wt data

The data set was introduced by Fabrizio et al. [FGB™05]. To study the function of Sir2
in yeast ageing process, RNA samples were extracted from sir2/AA and wild type strain

in duplication, and hybridized with Affymetrix YG-S98 chips. This leads to four arrays,
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Figure 2.8: M-A plots for perturbed Spiked-in data set (n=2.5) after Sub-Sub normal-
ization. 20% randomly selected genes are artificially up-regulated by 2.5 fold in Array
Q, R, S and T. The differentially expressed genes are marked red, and un-differentially
expressed genes are in black. The trimming fraction in the subplots are (A) 30%; (B)
20%; (C) 10%; (D) 0%.

two corresponding to sir2/\ and the other two corresponding to wild type. The YG-
S98 chip has 534 x 534 spots on it. We will use this data set as an example of gene

differentiation.

Yeast technical replicates data

The data set was downloaded from Affymetrix web site as an sample data set [Aff].
It includes two technical replicates of YG-S98 arrays: Yeast-2-121501 and Yeast-2-

121502. Technical replicates are obtained by hybridizing the same RNA sample to
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Figure 2.9: M-A plots of perturbed spike-in data set (n=1.5 and n=1.25) after Sub-Sub
normalization. 20% randomly selected genes are artificially up-regulated by 1.5 fold (A
and B) and 1.25 fold (C and D) in Array Q,R,S and T. The trimming fractions are: (A)
0%; (B) 30%; (C) 0%; (D) 30%.

multiple arrays. The “obscuring” variations can only be introduced after hybridization.
So we expect no biological variation between technical replicates since they are from
exactly the same sample. Technical replicates are different from what are so called
biological replicates. The latter ones are hybridization results of different RNA samples
that are prepared separately from the same biological sample, i.g. a tumor sample from

a patient. Technical replicates enable us to compare the performance of normalization

methods by measuring the variation reduction.

Primate brain expression data

Expression profiles offer a way to study the difference between humans and their closest

evolutionary relatives. Unfortunately, gene chips are only available commercially for a
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limited number of species. For example, there is still no commercial gene chip for
chimpanzee. To measure the expression profiles for chimpanzees, we have to do cross
species hybridization, that is, hybridize chimpanzee RNA samples with human chips.
The Primate brain expression data is one of this type of data which is available from
http://email.eva.mpg.de/~khaitovi/supplement1.html [EKK02]. Two brain samples are
extracted from each of three humans, three chimpanzee and one orangutan. In what
follows we only show results on two human individuals (HUMAN 1 and HUMAN 2),
one chimpanzee (CHIMP. 1) , and the orangutan (ORANG). The mRNA expression

levels were measured by hybridizing them with the Affymetrix human chip HG-U95.

2.6.2 Results

Example of differentiation
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Figure 2.10: An example of gene differentiation. (A) Scatter plot of log transformed
expressions for probe sets in wild type versus those in sir2A. (B) The corresponding
M-A plot.
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Unlike most of the other existing normalization methods, Sub-Sub does not assume
that the majority of genes are not differentially expressed. That is, Sub-Sub allow a
fraction of genes to be differentially expressed between arrays. In addition, the number
of up-regulated genes and the number of down-regulated genes are not assumed to be
equal. In section 2.5, we have shown the effectiveness of Sub-Sub to deal with data set
that has substantial differentiation fraction using the perturbed Affymetrix Spike-in data
set. In the perturbed Spike-in data, we simulate a situation in which a certain fraction
of genes are differentially expressed, while log ration of the other genes are close to 0.
Consequently, two clusters appears in the point cloud as shown in the M-A plot.

One may ask can this appear in a real microarray data set? The answer is“yes”.
As shown in Figure 2.10, Yeast sir2/A/wt data set provides us a good example. Fig-
ure 2.10A shows the scatter plot of log transformed expressions for probe sets in wild
type versus those in sir2/A. Obviously, there are two clusters that appear in the scat-
ter plot. The major cluster corresponds to genes that are not differentially expressed
in sir2/\ with respect to wild type. Whereas, the other cluster corresponds to differ-
entially expressed genes. These two clusters can be observed more easily in the M-A
plot as shown in Figure 2.10B. We investigate the gene cluster that is down-regulated in
sir2/\. It turns out that most of these genes are involved in the yeast pheromone path-
way [RNMT00, WDO04]. Thus deletion of sir2 results in the repression of the pheromone
pathway. From another point of view, this example indicates that it is reasonable for

Sub-Sub normalization to protect differentially expressed genes and outliers using LTS.

Variation reduction by Sub-Sub normalization

Stratification is a statistical technique to reduce variation. Sub-array normalization can

be regarded as a way of stratification. We normalize the yeast array 2-121502 versus
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Figure 2.11: The lowess curves of |M| versus A values by various normalization meth-
ods. Gray: no normalization; black: sub-sub; red: quantiles; green: constant; purple:
contrasts; blue: invariant-set; orange: loess; cyan: gspline. In Sub-Sub, sub-array size,
overlapping size and trimming fraction are set to 20 x 20, 10 and 20%, respectively.

2-121501 by various normalization methods available from “affy” package in Biocon-
ductor. Since the two arrays are technical replicates, the difference between them is
due to experimental variation. In the resulting M-A plots, we fit lowess [Cle79] curves
to the absolute values of M, or |M|. These curves measure the variation between the
two arrays after normalization, see Figure 2.11. The sub-array normalization achieves
the minimal variation. Since variation is reduced, signal to noise ratio is enhanced and
power of significance tests is increased.

Generally, a smaller sub-array size captures more spatial bias and therefore leads
to more variation reduction in Sub-Sub normalization. Figure 2.12 shows the effect of
sub-array size on variation reduction. As can be seen, with the decrease of sub-array

size, more variation reduction is achieved.
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Figure 2.12: Effect of sub-array size on variation reduction. Trimming fraction and
overlapping size are set to 20% and O, respectively.

Trimming fraction is also important for variation reduction in Sub-Sub normaliza-
tion. On one hand, a trimming fraction must be large enough to protect the differentially
expressed genes and outliers in the data. On the other hand, larger trimming fraction
results in less number of probes left for estimation in LTS. Thus, we need to trade off
between bias and variation. Definitely, there is no differentiation between the yeast tech-
nical replicates. So a small trimming fraction should be used for Sub-Sub normalization.
As expected, the variation decreases gradually as the trimming fraction increase from
10% to 50% (see Figure 2.13). However, a non-zero trimming fraction is required to

protect the influence of outliers in the data. So as shown, if a trimming fraction of 0% is
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Figure 2.13: Effect of trimming fraction on variation reduction. Sub-array size and
overlapping size are set to 20 x 20 and 10, respectively.

used, we do not achieve consistent variation reduction across the whole intensity range.

In the range with small intensities, the worst variation reduction is obtained.

Primate brain expression data

Compared to other primate brains such as chimpanzee and orangutan, a relatively high
percentage of genes are differentially expressed in human brains, and most of them
are up-regulated in human brains [CLZ"03, GG03]. Moreover, the chimpanzee and
orangutan samples are hybridized with human HG-U95 chips, so it is reasonable to

assume: if there were any measurement bias in primate mRNA expressions compared
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Figure 2.14: The densities of expression log-ratios between: (A) HUMAN 1 versus
ORANG.; (B) HUMAN 2 versus ORANG:.; (C) HUMAN 1 versus CHIMP. 1; (D)
HUMAN 1 versus HUMAN 2. The results from SUB-SUB normalization (trimming
fraction is 20%) and quantile normalization are represented by dotted and solid line
respectively.

to humans, it would be downward bias. Figure 2.14 shows the density functions of log-
ratios of gene expressions for four cases: HUMAN 1 versus ORANG.; HUMAN 2 ver-
sus ORANG.; HUMAN 1 versus CHIMP. 1 and HUMAN 1 versus HUMAN 2. In Fig-
ure 2.14, the density curves of the normalized densities by SUB-SUB(trimming fraction
is 20%) and by quantile normalization are plotted in dotted and solid line respectively.
When comparing humans with primates, the distribution from the SUB-SUB method
shifts to the right than that from the quantile method. This is more obvious in the cases
of humans versus orangutan, which are more genetically distant from each other than

other cases do; see Figure 2.14A and Figure 2.14B. As expected, the distributions skew
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to the right and the long tails on the right might have a strong influence on the quantile
normalization, which aims to match marginal distributions from humans and primates

in a global fashion.

I I I I I
8 10 12 14 16

Figure 2.15: M-A plot of HUMAN versus ORANG after normalization. The sub-array
size, overlapping size and trimming fraction are set to 20 x 20, 10 and 30% for Sub-Sub
normalization, respectively.

However, in the cases of HUMAN 1 versus ORANG. and HUMAN 2 versus
ORANG., the modes corresponding to the quantile method are in the negative terri-
tory while the modes corresponding to SUB-SUB method are closer to zero. The results
from SUB-SUB normalization seems to be more reasonable. Furthermore, the differ-
ence in the case of HUMAN 1 versus HUMAN 2 is more distinct than that in the case
of HUMAN 1 versus CHIMP. 1; see the two subplots at the bottom in Figure 2.14. The
analysis in [EKK"02] also indicates that HUMAN 2 differs more from other human
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samples than the latter differ from the chimpanzee samples. We checked the M-A
plot of HUMAN?2 versus ORANG after SUB-SUB normalization (see Figure 2.15), and
observed that HUMAN 2 has more up-regulated genes than down-regulated genes com-

pared to ORANG.

2.7 Discussion

2.7.1 External controls

In cDNA arrays, some designs use external RNA controls to monitor global messenger
RNA changes, [VKvT03]. In our view, external RNA controls play the role of undiffer-
entiated probe sets. To carry out local normalization, we need a quite large number of

external controls for each subgrid. In current Affymetrix arrays, this is not available.

2.7.2 Differentiation fraction

In many microarray experiments, the primary goal is to identify differentially expressed
genes. But the differentiation fraction may be quite different from one case to another.
Following are three cases in which a large fraction of genes may be differentially
expressed between two samples. First, in the study on the life span of yeast, we compare
expression profiles of a wild type strain with another such as sch9/A. The metabolism
in the knock-out strain is greatly reduced and this leads to life span extension [FPPT01].
Second, gene chips for some organisms are not available. And cross-species hybridiza-
tion is a useful strategy for comparative functional genomics. The comparison of brain
expressions of humans versus primates discussed earlier is one such example. Third,
to reduce the cost, some customized arrays are designed to include only probes of hun-

dreds of genes that are related to a specific biological pathway. SUB-SUB normalization
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uses LTS to identify a "base” subset of probes for adjusting difference in background
and scale. In theory, the method can be applied to microarray experiments with differ-
entiation fractions as high as 50%. In addition, our method does not assume an equal
percentage of up- and down-regulated genes. In the mean time, LTS keeps the statistical

efficiency advantage of least squares.

2.7.3 Non-linear array transformation versus linear sub-array

transformation

To eliminate the non-linear phenomenon seen in M-A plots or Q-Q plots, methods such
as lowess, gspline and quantile normalization use non-linear transformation at the global
level [WJJT02, BIApS03, YDL102]. In comparison, we apply a local strategy in SUB-
SUB normalization. One array is split into sub-arrays and a simple linear transformation
is fitted for each sub-array. With an appropriate sub-array size and trimming fraction,
the nonlinear feature observed in M-A plots is removed by linear sub-array transforma-
tion to a great extent. We speculate that the nonlinear phenomenon is partially caused by
spatial variation. One simulation study also supports this hypothesis, but further inves-
tigation is required. Next we give one remark regarding nonlinearity. In normalization,
we adjust the intensities of a target array compared to those of a reference. Even though
the dye effect is a nonlinear function of spot intensities, a linear transformation may be
a good approximation as long as the majority of probe intensities from the target and
reference are in the same range and thus have similar nonlinear effect. Occasionally
when the amount of mRNA from two arrays are significantly different, slight nonlinear
pattern is observed even after sub-array normalization. To fix the problem, we can apply
global lowess after the sub-array normalization. Alternatively, to protect the substan-
tial differentiation, we can apply a global LTS normalization subject to a differentiation

fraction once more.
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2.7.4 Transformation

The variance stabilization technique was proposed in relation to normalization
[DHHRO02, HHS"02]. We have tested SUB-SUB normalization on the log-scale of
probe intensities, but the result is not as good as that obtained on the original scale.
After normalization, a summarization procedure reports expression levels using the
probe intensities. we have tried the median polishing method [[BC*03] on the log-scale.

Alternatively, we can do a similar job on the original scale using MBEI [LWOI1b].

2.7.5 Usage of mis-match probes
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Figure 2.16: Histogram of percentages of MM probes in subsets associated with LTS.

Some studies suggested only using perfect-match probes in Affymetrix chips
[WIO4]. We checked the contribution of mismatch probes and perfect match probes to
the subsets associated with LTS regressions from all sub-arrays. Figure 2.16 shows the

distribution of the percentage of mis-match probes in the subsets identified by LTS. Our
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result shows that mis-match probes contribute slightly more than perfect match probes

in LTS regression, mostly in the range 46-56%.

2.7.6 Diagnosis

The detection of bad arrays is a practical problem in the routine data analysis of microar-
rays. In comparison with the obvious physical damages such as bubbles and scratches,
subtle abnormalities in hybridization, washing and optical noise are more difficult to
detect. By checking the values of o and 3 in LTS across sub-arrays, we can detect bad
areas on one array and save information from the rest of the areas. Consequently, we

can report partial hybridization result instead of throwing away an entire array.

2.8 Improve performance of Sub-Sub by PLTS

2.8.1 Limitation of LTS

LTS is the basis of Sub-Sub normalization. In each sub-array, LTS is performed to
estimate the normalization relation between a target and a reference array. However,
LTS has some drawbacks in nature when used for normalization. Basically, LTS is
a robust method to solve linear regression problems. For a simple linear regression
model:y = a + [z + ¢ with n observation (z;, y;), if we denote the squares residuals in
an ascending order by |r2(«, 3) (1) < |[r*(a, 8)(2) < ---|r*(r, 3)_(n). Then the LTS

estimation of coverage h, &, B are obtained by

[nh]
min > (0, D)l
=1

As shown, LTS estimates the regression coefficients based only on data points with the

smallest residuals, so it is robust to the outliers. That is, it achieves a more accurate
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estimation of the linear relation between x and y, when there are some outliers included
in the data.

In an ordinary LTS, vertical offsets are used: («, ) = y; —a— (z;. The vertical off-
set only takes the errors from response variable y into account. Consequently, extreme
values in x;s and y;s are not equally treated. Extreme values in z;s are ignored in some
sense. But for a normalization problem, the selection of reference is often arbitrary. It is
more reasonable to treat the reference and the target array equally. To do this, we need to
take into errors from both z and y into account. To address this issue, we designed a new
method called PLTS (Perpendicular Least Trimmed Squares). The new method is based
on the algorithm proposed by Li [Li04] but with some revisions. In PLTS, the vertical
offset is replaced by perpendicular offset: r(«, 5) = (y; —a— Bz;)/+/1 + 2. Note that
the same formula is used by Total Least Squares in a error-in-variables model [VHLO2].
The vertical offset measures the perpendicular distance from a data point (x;, ;) to the
regression line, and therefore takes the errors from both = and y into account (see Fig-

ure 2.17).

(A) (B)

*
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(x-%)% +{y-F1Z
*

Figure 2.17: Comparison of vertical offset and perpendicular offset. (A)vertical offset
used in LTS; (B)perpendicular offset used in PLTS.
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2.8.2 LTS versus PLTS
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Figure 2.18: PLTS is symmetric with respect to x and y. (A)LTS; (B)PLTS. In (A), the
magenta line and cyan line are the best fitted lines of regression y ~ x and x ~ 1y,
respectively. In (B), outliers are marked as blue points. For both LTS and PLTS, a
trimming fraction of 30% is used.

We developed an algorithm to solve PLTS on the basis of Li’s work [Li04]. One of
the key properties of PLTS is that it is symmetric with respect to = and y. To illustrate
this property, we apply both LTS and PLTS with the same trimming fraction (30%) on a
data with 200 observations. As shown in Figure 2.18, for LTS, two different regression
lines are obtained. One is for regression of y on x, the other is for regression of x
on y. But for PLTS, the same regression line is achieved no matter x or y is used
as the response variable. This property is useful when PLTS is applied to Sub-Sub
normalization. By using PLTS, we achieve the same normalization no matter which
array is chosen as the reference. Of more importance, PLTS takes outliers from both
target and reference array into account, a more accurate estimation would be expected.

To test whether PLTS achieve a more accurate estimation of linear relations between
variables than LTS, we simulate a data with of 1000 in size using the following pro-

cedure. First, we generate a vector X = [1,2,--- ,1000]. Then we generate another
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Figure 2.19: Comparison of LTS with PLTS using simulated data with errors in both x
and y. (A) LTS; (B) PLTS. Magenta stars mark the data points in the subset. Blue dots

indicate the identified outliers.
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Figure 2.20: PLTS achieves more variation reduction than LTS in Sub-Sub normaliza-
tion. Sub-array size and overlapping size are set to 20 x 20 and 10, respectively.
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vector Y, where Y¥; = 100 4 0.8X; for all 2+ = 1,2,--- /1000. Finally, we introduce
errors for both X and Y by adding a random number ¢, and ¢, to each X; and Y},
where ¢, ~ N(0,200) and ¢, ~ N(0,200). This procedure generates 1000 observa-
tions (x,,y;) with the underlying relation ¥ = 100 + 0.8X. Figure 2.19A and Fig-
ure 2.19B show the regression lines estimated by LTS and PLTS respectively using the
same trimming fraction: 20%. As can be seen, the regression line estimated by LTS is
y = 279.45 + 0.4970x. It deviate from the real relation between x and y. Those data
points with larger values in vertical direction are more likely to be identified as outliers,
which results in a regression line with a slope smaller than the real value. Whereas,
PLTS achieves a regression line: y = 109.63 + 0.8027x. Both the slope and intercept of

the regression line are close to the real ones.

2.8.3 Application of PLTS on Sub-Sub

If PLTS is able to capture the relations between two variables more accurately, we would
expect more variation reduction after Sub-Sub normalization for the Yeast technical
replicates data set. We compare the results of Sub-Sub normalization using LTS and
PLTS. As expected, PLTS does reduce more variation between the replicates than LTS
with different trimming fractions (see Figure 2.20). For a larger trimming fraction, the

improvement in performance is more significant.
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Chapter 3

Identification of perturbed genes

between time courses

Microarray technologies have been applied to a wide range of biological studies includ-
ing large-scale linkage analysis, association, and copy number studies et al. Among
all these applications, the most frequently used application is to detect differentially
expressed genes between control and treatment/disease samples. For example, to under-
stand the mechanisms of carcinogenesis, we can compare the gene expressions in tumors
with those in the normal tissues to identify the differentially expressed genes. Differen-
tial expression between treatment and control condition can be investigated from both a
static and temporal viewpoint. In a static experiment design, snapshots of gene expres-
sion levels are taken without considering the temporal effect. Whereas in a temporal
experiment design, which is also called a time course design, the gene expression across
several time points are measured. In this chapter, we introduce a novel method, called
MARD (Mean Absolute Rank Difference) analysis, which is developed to identify dif-

ferentially expressed genes between treatment and control time courses.

3.1 Introduction

Microarray techniques have been widely applied to identify genes that have different

expression under various biological conditions. In many cases, we regard one condition
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as treatment and the other one as control, which leads to the definition of treatment-
control experiment design. Differential expression between treatment and control con-
dition can be investigated from a static or a temporal viewpoint. In a static experiment
design, snapshots of gene expression levels are taken without considering the tempo-
ral effect. While in a temporal experiment design the gene expression across several
time points are measured. Since the regulation of gene expression is a dynamic process,
usually a temporal design provides more biological information than a static design.

It has been shown that most available approaches for the static data are not directly
applicable for the time-course data [BJO4, SXL*T05]. Existing data analysis meth-
ods for the time course data often focus on identifying special expression patterns
across the time points [WKS04]. For example, clustering analysis is often per-
formed on a time course data to identify gene clusters with interesting expression pat-
terns [ESBB98, LL0O3]. On the other hand, several approaches have been proposed
to compare different time courses and identify differentially expressed genes between
them. If the sampling time points can be “aligned” between the treatment and con-
trol time courses, we can identify differentially expressed genes by direct comparison
of the gene expression patterns under the two conditions. Available methods include
the fold-change analysis [YSG™02], order-restricted statistics [PLL 03], the analysis of
variance [PYL"03], and one-sample multivariate empirical Bayes statistic [TpS06].

However, two difficulties exist in the analysis of microarray data with tempo-
ral design. First, the sampling time points is generally different from one study to
another [BJO4]. As a consequence, it is hard to integrate data from different studies. Sec-
ond, a treatment may alter the “life-clock” pace of an organism. For example, it has been
reported that the knockout of gene sch9 extends yeast life-span by three folds [FPP*01].

In this case it is difficult to align the time-scales of individuals under treatment and
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control conditions. When the sampling time points can not be “aligned” between treat-
ment and control, various interpolation techniques are often used as a preprocessing step
before the direct comparison. For example, Bar-Joseph et al. [BIGST03] proposed to
represent gene expression patterns in treatment and control by B-spline curves and then
compute a global difference measure between these two curves. Recently, Storey et
al. [SXL105] proposed to represent gene expression trajectories by a natural cubic spline
and then use goodness-of-fit test for differentially expressed genes detection. However,
in either situation, the time points of the two time courses must be “aligned”.

In this chapter, we propose a novel method to identify differentially expressed genes
between control and treatment time courses which does not require “aligned” time points
in the two time courses. The method is proposed for the following considerations. (1)
The relationships between genes can be estimated from microarray time course data.
Functionally associated genes tend to have similar expression patterns. So we can con-
struct a gene relationship network out of a microarray data set, where each node is a gene
and each edge links two genes with similar expression patterns. Two gene relationship
networks can be constructed from control and treatment time courses which may be dif-
ferent from each other. (2) Due to the robustness of cell system [LLYLT04, ASBL99],
we may expect the gene relationship network to be also robust. Namely, we may expect
that the majority of gene relationships are only marginally affected by a nonlethal treat-
ment. Otherwise, dramatic change in the whole relationship network may cause lethal
effect. (3) If a gene is substantially affected by a treatment, we would expect a dramatic
change of the gene between the two relationship networks constructed from control and
treatment time courses. So we estimate the effect of the treatment on a gene indirectly
by investigating the gene’s neighborhood change between the two relationship networks
constructed from the treatment and control time courses. Namely, if the neighbors of

a gene in the two networks change dramatically, we regard this gene as substantially
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affected gene by the treatment. Based on these three considerations, we design a statis-
tic called MARD (Mean Absolute Rank Difference) to measure the effect of a treatment
on a gene. Since we compare the two constructed relationship networks instead of
directly comparing the expression patterns, the problem of sampling scheme differences

between treatment and control is not an issue for our approach.

3.2 Available approaches

3.2.1 Static analysis based methods

Many approaches have been introduced to identify genes that are differentially
expressed between two experiments with a static expression design. However they can
not be applied directly to compare time courses , due to differences in sampling rate
and variation in the timing of biological processes [BJGS*03]. Previously proposed
approaches for identifying differentially expressed genes between time courses essen-
tially applied static analysis methods. These ad hoc methods are not generally appli-
cable, or only applicable for a specific data set. These methods include cluster anal-
ysis [ZSV100], generalized singular value decomposition [ABB03], point-wise com-
parison [NRS*02, HLM*01], and customer-tailored models [XOZ02]. Although these
approaches have achieved some success, they suffer from many problems. Cluster anal-
ysis identifies gene clusters in which a large portion of genes change in expression.
But it fails to detect differentially expressed genes that belong to clusters for which
most genes do not change [ZSVT00]. Generalized singular value decomposition can
be used to detect difference between various sets of gene sets but it is not applicable to
comparing individual genes. Moreover, this method requires that the two time courses
being compared have the same number of time points , which is not the case in gen-

eral [ABBO3]. Direct point-wise comparison between samples in two time courses does
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not take the dynamic nature of the time course experiments into account. Further more,
it can not distinguish the real gene expression changes from the random noises. In
addition, for two time courses that have different timing scales, direct comparison is
impossible. Custom-tailored models require significant assumptions about he shape of
the expression profiles being compared, e.g. following linear or quadratic models, and
therefore does not provide a general solution to time course comparisons [XOZ02]. In
most cases, it is hard to justify using a highly specific model. Even if some genes are
known to change in a certain way over time, e.g. a sinusoidal model foe the cell cycle
time courses, using such a specific model for the shape of expression files may result
in failure of detecting changes in many genes that are differentially expressed but not

behave in the way that is assumed by the model [XOZ02].

3.2.2 ANOVA method

Park et al. provided a detail description about application of statistical tests for identi-
fying differentially expressed genes in time course microarray experiments [PYLT03].
Two-way ANOVA model is applied to detect differentially expressed genes between two
time courses with aligned time points, where each time course is obtained from a group
of samples (treated or control).

Let y;.1, represent the expression level of gene n in replication [ from group ¢ at
time k. The following models, M1 and M2, are considered for data set with and without
replications, respectively.

M 2 Yigin = pn + Qin + Bn + (@B)ikn + Eikin,

Ms = Yiktn = pon + Qin + Bin + Eikin,

where : = 1,2k = 1,--- ,K;l =1,---,L;and n = 1,--- | N. The gene effects
1, capture the overall mean expression value for gene n across the arrays. The «;,

terms account for gene specific group effect representing overall differences between
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the treated and control group. The [3;x,, account for time effects that capture differences
in the overall expression in the samples from different time points. The (), terms
account for the interaction effect between group and time. Note that the interaction term
can not be estimated if there is no replication in a experiment. To identify genes that are
differentaily expressed between treatment and control groups, we are interested in genes
that show significant interaction effect («(3);x, in model M; or significant group effect
o, In model Ms. Testing significance of these effects can be achieved by the calculation

of F-statistics for each gene.

3.2.3 Continuous representation based method

Another method proposed by Bar et al in 2003 is based on the continuous representation
of time courses [BJGST03]. Gene expression profiles in both the treatment and control
time courses are represented as continuous curves using B-splines. To address the time
shift and time scale problems between the two time courses, liner warping function is
used to obtain an optimal alignment by adjusting shifting and stretching parameters to
minimize a global error function [BIGG*03]. For a given gene, its expression profiles
in the control and treatment time course are denoted as C; and Cs, respectively. Then
the problem of detecting expression difference of the gene in the two time courses has
been converted into the following hypothesis testing problem:

Hy: C, is a noisy realization of Cy,

Hy: C; and C, are independent.

The test is performed using the log likelihood ratio statistics written as

p(Cs|Cy, Hy)

2log —————~.
gp(02|01>H0)
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The log likelihood ratio statistics measures the ability of the hypothesis to explain the
difference between the two curves.

To compute p(Cs|C', Hp), the noise in the individual measurements is assumed to be
normally distributed with mean 0 and variance 0. Denote the actual expression values
measured in the control and treatment experiment as Y; and Ys, respectively. Due to
the difference in sampling rate and temporal expression variations, Y; and Y, can not
be compared directly. Therefore, the spline curve is sampled at the time points in the
control experiment to obtain a set of expression values, denoted as Y’5. Now Y’5 is

comparable to Y; because they have the same sampling rate. Thus, we can set

1

p(C2|ClaHl) = p(YZ/‘UQ?Hl) = (271-02)m/2'

To compute p(Cs|Cy, Hy), the definition of global difference between two expres-

sion curves C; and C, is introduced as

e’ = D(Cy,Cy) = f:: [Ca(t) — Cl(t)]th7

Ve — Us

where v, and v, are the start and end of the interval in which the two curves can be com-
pared. Then we can set p(Cy|C1, Hy) = p(e?|Y7, 0%, Hy). To calculate p(e?|Yr, 02, Hy),
one replaces it with the maximum-likelihood assignment of p(e?|Y;, 0%, Hy), which can
be computed by finding a curve C with a global distance of (e?) from C; that maximizes
the probability of C being a noisy realization of C;. That is, only a global error value ¢?
that can not be adequately explained by the best (maximum-likelihood) curve C will be

considered significant.
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3.2.4 EDGE method

Storey et al. introduced the method called EDGE (extraction of differential gene expres-
sion) in 2005 [SXL*05]. Under the null hypothesis, the method assumed that there is
no differentially expressed genes between the treatment and control time courses. That
is, the treated and control groups have the same average expression profile of all the
genes. Therefore, we can use a single cubic curve to fit the combined group. Under
alternative hypothesis, the method fits a cubic curves in each group seperately. Fitted
values under the null and alternative hypothesis are calculated for each observed value.
The residuals of the fitting are then obtained by subtracting the fitted values from the
observed values. Denoting the sum of squares of the residuals obtained from the null
hypothesis and alternative hypothesis as SS? and SS}, respectively, a statistic for gene i

is constructed as
0 _ 1
F = SS; —SS;
S S}

This statistic compares the goodness of fit of the model under the null hypothesis with
that under the alternative hypothesis. It is a quantification of evidence for differential
expression between the treatment and control time courses. The larger it is the more

differentially expressed the gene appears to be.

3.3 Description of MARD analysis

In this thesis we mainly focus on two-channel cDNA arrays, but the main idea can be
extended to other types of arrays.

Given a data set from treatment-control time course design, suppose that it mea-
sures the expression levels of n genes at K; time points/samples under control con-

dition and K time points/samples under treatment condition. Let’s denote the gene
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expression levels under the control and treatment condition as YV = ( é?) . and
Yy = (yé?)nXKQ correspondingly. In both matrices, each row is the expression lev-
els of a gene across different time points while each column stands for all the n genes’
expression levels at one specific time point.

First, under each condition (treatment or control) and for each gene ¢, we can define
the relationships between gene i and all the other genes by calculating the distance
d(i, 7) between their expression patterns. Several metrics can be used to describe this
distance including the Euclidean distance, Pearson correlation coefficient and etc.. Then
for gene i, we obtain two distance vectors d(!) = (dgl), e ,dﬁ)l, dgl, e ,dg)) and
d? = (d§2), s dg)l, dl(i)l, s dgf)), where dg-l) and dg-z) are the distances between the
expression patterns of gene ¢ and gene j under the control condition and the treatment
condition respectively.

Second, for each distance vector under each condition, the ranks of all the genes

j # i are calculated and denoted by r® = (" ... 7’&)1, o)) and #@ =
2 2 (2
... R LA

r$?), where rj and r? are the rank of dy) in dV and d§-2) in d® respectively. Then the

change of the relationships between gene 7 and gene 7 under the two conditions can be

described as

where j = 1,2,--- ;nand j # i.

Thirdly, we define a “neighborhood” for gene 7 because the change of gene ¢ under
the two conditions should not be described by the change in the relationships between
it and all the other genes. Two types of genes are included in the “neighborhood”. The
first type includes those genes that have very similar expression profiles with gene ¢

because these genes tend to be functionally associated with gene :. However, if we only

56



consider this type of genes, when all the neighbors of gene 7 are perturbed by the treat-
ment to the same level, we would not see significant change in the “neighborhood” of
gene ¢ although gene ¢ does change under the two conditions. To make up this prob-
lem, we include the second type of genes into the “neighborhood” of gene 7 which have
very large distance with gene ¢ under either condition. These distant genes usually con-
sists of genes from various function categories and may have no biological association
with gene 2. When all the neighbor genes are perturbed at the same level, these distant
genes will have large change in their relationships with gene ¢ because most of them
may not be perturbed together with gene ¢ or may be perturbed in very different way
with gene 7. With all these considerations, we have the following three definitions of

“neighborhood”:
1. g-proximal neighborhood: ng)(q) ={j: dg-k) <d®(q)},
2. g-distal neighborhood: ng)(q) ={j: dg-k) >d*®(1—-q)},
3. g-two-end neighborhood: Gék)(q) = ng)(q) U ng)(q),

where d*)(q) is the g-th lower quantile of the distance vector d*¥) and k = 1,2 for the
two conditions. So ¢ described how many genes are included in the “neighborhood” of
one gene. Details about how to determine ¢ can be found in “Discussion”.

Finally, given the value of ¢ and following one definition of “neighborhood”, the

Mean of Absolute Rank Difference(MARD) for gene i is defined as

ZJGG(Q) A

Mila) = #G(q)

where G(q) = Gl(l)(q) U Gl(2)(q) is the union of the two sets of neighborhood genes
of gene ¢ under control and treatment condition, [ = 1, 2, 3 corresponding to the three

definitions of “neighborhood” and #G/(q) stands for the total number of genes inside
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G(q)-. So for any given gene ¢ and value of ¢, we can calculate a MARD for each of the
three definitions of “neighborhood”.

Having the MARD values of all the genes, we can rank the genes in descending
order of their MARD values. The larger the MARD value of a gene is, the larger change
the gene has under the treatment and control conditions.

In the next two sections, we will test our approach using two treatment-control time-
course microarray data sets. In the first data set, time courses of gene expression in
response to Ca*t were measured with and without the FK506 treatment in budding
yeast [YSGT02]. In both time courses, gene expression levels were measured at four
well matched time points after C a?* addition: 15, 30, 45 and 60 min. Therefore we refer
to this data set as the aligned time course data set. The other data set provides the gene
expression profiles across the cell cycle of wild-type budding yeast [SSZ198] and the
A fkh1A fkh2 double mutant [ZSV100]. The two time courses were measured inde-
pendently by two research groups and different sampling schemes were used. Therefore
it’s difficult to directly compare the two time courses. We refer to this data set as the

unaligned time-course.

3.4 Evaluation of MARD on aligned time course data

3.4.1 Ca’" Response w/o FK506 Inhibition Data

Calcineurin is a C'a®"/ calmodulin-dependent protein phosphatase. It is activated by spe-
cific environmental conditions, including exposure to Ca?>" or Na™, and then induces
gene expression by regulating the activity of the transcription factor Crz1p/Tcnlp. The
effects of Ca?* and Na™ can be counteracted by FK506, which is an inhibitor of the cal-
cineurin protein, thereby shutting down the entire signaling pathway (see Figure 3.1). To

screen for calcineurin-dependent genes regulated by C'a®*, Yoshimoto et al. [YSGT02]

58



Ca‘l"l-

|

Calcineurin — FK506

P

—‘-

FKS2; PMC1; PMRI;
ENAIL:ENBI; ... ?

Figure 3.1: Calcineurin/Crz1p signaling pathway in S. cerevisiae.

performed four groups of cDNA microarray: (1) C'a®" time course, (2) Ca** + FK506
time course, (3) Ca?t +FK506/ C'a®**, and (4) Acrz1/CRZ1: Ca**. In experiment (1)
and (2), yeast samples were collected at t =15, 30, 45 and 60 min after being exposed
to Ca*" and Ca?T+FK506 separately, and were compared with sample collected at t
=0. In experiment (3), direct comparison was made between samples collected from the
FK506-treated and control samples at 15 and 30 min after C'a®>* addition. In experiment
(4), direct comparison was made between samples collected from wild type and Acrz1
strain at 15 and 30 min after C'a®" addition. The authors identified 153 calcineurin-
dependent genes activated by C'a®* based on microarray data from all the four experi-
ments.

Our aim is to identify the genes significantly perturbed by the inhibition of cal-
cineurin with FK506. Since FK506 blocks the calcineurin/Crz1p signaling pathway, we
would expect that the genes directly related to this pathway are more severely perturbed

than other genes. According to our approach, the degree of perturbation of a gene is
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measured by its neighborhood-change between the treatment and control time-course
experiments. We only use the data from experiment (1) and experiment (2) and regard
Ca?T+FK506 time course as treatment and C'a®t time course as control. Totally there
are about 6,000 genes whose expression levels were measured in the two time courses.
We filter out genes with missing values in either time course after which 5052 genes left.
Since genes with constant expression levels across the time points in both time courses
are of no interest, we remove 20% constantly expressed genes with the smallest varia-
tion across all the time points in the two time courses. For the remaining 4042 genes, we
apply the MARD analysis (two-end neighborhood with an informative fraction g=1% in
this paper, see ”Discussion” for determination of q). Note here only genes activated by
Ca®" are of interest, we use ratios rather than log transformed ratios as the expression
measurements to lower the MARD value repressed genes. Detail explanation will be

given in “Discussion”.

3.4.2 Identification of Perturbed Genes

We calculated the MARD values for all the 4042 genes and the distribution of them
is shown in Figure 3.2. Biologically speaking, after the inhibition of calcineurin by
FK506, we would expect dramatic neighborhood changes for genes that are directly
related to Calcineurin/Crz1p signaling pathway. Therefore these genes are expected to
have high MARD values. On the other hand, house-keeping genes, which are essential
for cell survival, tend to be less severely affected by any perturbation, since significant
change in the activities of these genes may be lethal to Yeast. Consequently, these
house-keeping genes should have lower MARD values. As shown in Fig. ??A, the
histogram of MARD shows a notable heavy tail on the right-hand side and a small peak
on the left-hand side, which seem to be the calcineurin/ Crz1p pathway related genes

and house-keeping genes, respectively. We investigate those genes with small MARD
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Figure 3.2: Distribution of the MARD values (informative fraction q=1%) of the 4042
genes in the Ca** Response w/o FK506 Inhibition Data. Threshold at the vertical dash
line result in 142 genes.

values (on the left hand), it turns out that most of them are housekeeping genes, such as
ribosomal protein genes. Certainly, those genes with large MARD values (on the right
side) are more of interest. We validate their association with calcineurin/ Crz1p pathway
through comparing with previous studies [YSG'02, Cye03].

Table 3.1 lists the top 40 substantially perturbed genes in the C'a®** response w/o
FK506 inhibition data. As shown, most of these genes identified by MARD analysis
have also been reported as calcineurin dependent genes by Yoshimoto et al. [YSGT02].
For example, PMC1, the vacuolar C'a>* ATPase involved in depleting cytosol of Ca2+
ions, identified by both MARD analysis and Yoshimoto et al. Previous study shows that
PMCI prevents growth inhibition by activation of calcineurin in the presence of elevated

concentrations of C'a®>* [CF94]. Without FK506 treatment, expression of Pmcl gene
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Table 3.1: The top 40 substantially perturbed genes in response to FK506 treatment.

The JBC column indicates whether a gene was also reported by Yoshimoto et al.

Rank Gene Hanme  Function JBC
1 SRS BC A unknown Yes
2 YLR414C unk ok Yes
3 YLR194C unk ok Yes
4 YER184C unk ok Yes
5 YPL1490 ATZS  autophagy-related protein Yes
=3 YiOR 353 unk ok Yes
7 YBR o0 RCR1 imvolved in chitin deposition in the cal wall Yes
o] YHLT 92 CHSA chitin synthase activty Yes
9 HOLOT 40 unknown Yes
10 YR 2680 HLUA1 actin patch aszembly Yes
11 YR 440 THI4 thiamine hiosynthesis Yes
12 YRS B D21 unk ok Yes
13 YOR209C MPT1 nicatinate phosphoribosyitransteraze adivty Yes
14 YR OSSN MMT4  alpha1 34mannostransferase adivity Yes
15 YR O o CSEZ2  RMApolymerass [l transcription medistor adivity Yes
16 YOL158C EMB1 ferd c-enterobadin transporter activity Yes
17 YDL234C GYPY  Rab GTPaze activatar adivity Yes
18 YELO0EW PMC1  calcium-transporting ATPase activity Yes
19 YR ROSE SMA protein binding Yes
2 WAL 1S unk ok Yes
A YR DL HIP3 unknowen ez
= HRILOG 4N YIP3 unk novan Yes
23 YDLOO9C unk ok Yes
24 YMLO20C ARE1 protein serinethreonine kirese adivity Yes
o] YDL172C unk N ez
x YDR432C CWC2T  unknown Yes
x YOLO12C unk ok Yes
X YHR O YROZ  unknown Ma

A YPLOGTC unk N Mo

1| YOL241W unk ok Ma

7| YCROTMC AP ATPaze adivity, coupled to transmembrane movem ert of subsances Mo

32 YRLOODTC MET14 adenydzsulfate kiunknownse adivity Yes
i3 YHR 016 unk N Mo

* YOLOTEC CMKZ2  calcium- and calmodulindependent protein kinase activty Yes
-~ L1250 unk ok Yes
*x YPR170C unk ok Yes
i YERIEAN-A  Y5YE  unknown Mo

i YLR120C YRS azpatictype endopeptidase adivty Yes
2| YiGL1B5C unk ok Yes
40 YhROT S unk ok Ma

are up-regulated by at most 7-fold in response to C'a®". However, when the activity

of calcineurin is inhibited by FK506, the gene expression of Pmc1 becomes insensitive
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to high concentration of C'a®". Therefore, our result implies that the transcriptional
regulation of Pmc1 is dependent on the activity of the C'a**/Calcineurin pathway, which

suggests a positive feedback in this pathway.

3.4.3 Consistency with Previous Study

Consistency

0 1000 2000 3000 4000
Rank of MARD

Figure 3.3: The ranks of MARD values for genes identified by previous studies
in aligned data. Bars below the thick line are genes identified by Yoshimoto et
al. [YSG™02]; Bars above the line are genes with known functions [Cye03].

We checked the consistency of our identified genes with those identified as differ-
entially expressed in Yoshimoto et al [YSG"02]. Yoshimoto et al applied a two-step
analysis to identify calcineurin dependent genes activated by C'a®*. First, they selected

934 C'a®"-activated genes that were induced more than 2-fold at either 15 or 30 min after
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Ca®" addition in experiment(1). Second, they assessed the extent to which the expres-
sion of each of these genes was reduced by calcineurin inhibition by direct compari-
son of FK506-treated and non FK506-treated cells exposed to Ca®* in experiment(3).
Genes identified by this analysis are based on direct ratio measurements(“C'a®" addition
15 or 30 min” versus “Ca?" addition 0 min” and “FK506-treated” versus “non FK506-
treated”) in both steps and thereby are of high confidence. However, some calcineurin
dependent C'a®t activated genes may be missing, because: (1) They didn’t take into
account the genes that activated by C.a** only at 45 or 60 min (2) The arbitrarily deter-
mined 2-fold threshold may filter out some interested genes. Our MARD analysis aims
to find the genes that were significantly perturbed in terms of neighborhood by FK506
treatment. We only consider the two time courses in experiments (1) and (2).

Despite the differences between our method and the approach in Yoshimoto et al, the
two sets of identified genes are highly consistent with each other. Yoshimoto et al iden-
tified 153 calcineurin dependent C'a®" activated genes, among which 111 are present
in our data set (4042 genes included in total). To make a fair comparison, we select
the top 111 genes with the highest MARD values as listed in supplementary Table. 1.
Among these 111 genes, 63 genes are also identified by Yoshimoto et al with a p-value
of 5.7 x 10777, The consistency of our result with that of Yoshimoto et al is better illus-
trated in Figure 3.3. Most of the genes contain the Crz1p binding motif in their promoter
regions, suggesting that they were directly regulated by Crz1p. As can be seen from Fig-
ure 3.3, genes with higher MARD values are more likely to be reported as calcineurin
dependent C'a®* activated genes in [YSG'02]. Specifically, all the top 27 genes with
highest MARD values are among the 153 genes identified by Yoshimoto et al. More
interestingly, we found that crzl itself is significantly perturbed by FK506 according
to our result (with rank of 95) while it is not identified as calcineurin-dependent gene

by Yoshimoto et al. It turns out that crzl gene encodes an auto-regulated transcription
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factor, i.e., it regulates the transcription of itself (personal communication with Martha
Cyert, Stanford University).

We also apply two-way ANOVA and EDGE analysis for the data [PYL103,
SXL*05]. The two-way ANOVA analysis results in 167 genes whose expressions are
significantly different between the FK506 treated and non-FK506 treated time courses
with a significance level a = 0.01. Among these genes only 6 fall into the 153 genes
identified by Yoshimoto et al. If we reduce the significance level to 0.05, 783 genes are
identified, among which 54 are also within the 153 genes. However, the EDGE program
results in no differentially expressed genes between the two time courses with a false
discovery rate less than 10%. This may be caused by the lack of replicates or the small

number of time points in the experiment.

3.4.4 Consistency with Direct Comparison

Because the sampling time points are well matched between the treatment and control
in this data set, it is possible to directly calculate the gene expression profile changes
between treatment and control. Here, we would expect the neighborhood change of
a gene to be consistent with its expression pattern change for the following reasons:
(1) the biology system is robust [LLYLT04, ASBL99], only a small fraction of genes
have significant expression changes in response to a nonlethal perturbation; (2) we use
Euclidean distance to measure the neighborhood of genes. On the other hand, since
our approach explicitly uses more information about the gene-gene relationship than
direct comparison of gene expression patterns, some differences are also expected. The
change of gene expression patterns in treatment and control is defined as the normalized

Euclidean distance:

1) (2)

, = 3.1
g g 1 2
LY+ Y2 )
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Figure 3.4: Consistency of MARD value with normalized Euclidean distance. The iden-
tified genes in [YSG'02] are marked as black stars.

where Yg(l) , Yg(z) are the two time courses of gene g under control and treatment condi-
tions respectively and || - || is the Ly norm in this study.

We plot the MARD value of each gene versus the expression pattern change for each
gene in Figure 3.4. As we can see from the plot, genes with higher MARD values tend to
have larger expression pattern change in treatment versus control time course. The cor-
relation coefficient between the MARD values and the normalized Euclidean distances
of all the genes is 0.844. Furthermore, most of the genes identified by Yoshimoto et al.
have higher MARD values than the normalized Euclidean distances. This indicates that

the MARD-score based analysis has a higher discriminant power.
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Figure 3.5: Relationship between MARD values (q=1%) and lethality in aligned data.

3.4.5 Essentiality and MARD

Due to the robustness of a biological system, we would expect small neighborhood
changes in response to a perturbation for genes that are essential for cell survival. There-
fore, we studied the relationship between the MARD value and essentiality of genes.
Systematic gene deletion experiments have been performed in yeast [WSAT99]. In
total, 5860 yeast genes are deleted and 1117 (19%) of them are identified as essential
genes which means that single deletion of these 1117 genes is lethal for cells grow in
YPD medium.

We rank the MARD values for all the 4042 genes and calculate the lethality rate
using genes ranked from ¢ to ¢+ + 100 for different ©+ = 1,10, 20, - - - . The lethality rate
is defined as the fraction of essential genes in the gene set. We plot the MARD values

against the resulting lethality rate for each gene set in Figure 3.5. As shown in the figure,
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the lethality rate decreases from 56% to 5% with the increase of MARD values. This
is reasonable because the lethality rate describes how essential the genes in the gene set
are to the organism. If most of the genes inside a gene set are essential, the perturbation
by the treatment on them should be relatively small because significant perturbation on
them may be lethal to the organism. Now we have smaller MARD values for more
essential gene set. This means that our MARD statistics is a good measure of the effect
of the treatment on each gene. Since our method actually measures the change in the
neighborhood of each gene, this also support our rationale that genes, which are more
severely affected by a treatment, tend to have larger neighborhood changes and thereby a
higher MARD values. In addition, these results also show that gene relationship network
is robust, because essential genes that play important roles tend to be less affected by a

treatment.

3.5 Evaluation of MARD on un-aligned time course

data

3.5.1 The wt/A fkh1A fkh2 cell cycle data

Fkhl and Fkh2 are two yeast transcription factors involved in cell cycle regulation.
Deletion of each of them may cause mis-regulation of some genes, especially cell-cycle
related genes. Spellman et al. performed a time-course experiment to identify cell-
cycle regulated genes in wild type yeast [SSZ798]. Zhu et al. performed another time-
course experiment in which fkh1 and fkh2 were knocked-out [ZSV*00]. Two clusters
of genes (CLB2 and SIC1) that show different expression patterns in the A fkh1A fkh2
mutant were identified as Fkh1 or Fkh2 dependent genes by Zhu et al. Since the two

time course data sets have different sampling schemes, the expression patterns of genes

68



in them can not be directly compared. Bar-Joseph et al. identified 30 cell-cycle genes
and 22 non-cycling genes as differentially expressed by representing expression patterns

of genes by function curves and comparing directly the function curves [BIGS™03].

3.5.2 Identification of perturbed genes

(A) (B)
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Figure 3.6: MARD analysis of the un-aligned data (the wt/A fkh1A fkh2 cell cycle
data). (A) distribution of the MARD value (informative fraction q=1%) of the 5525
genes. (B) Relationship between MARD value and lethality.

After filtering out the genes with more than one missing values, we calculate MARD
values (two-end neighborhood with an informative fraction q=1%) for the remaining
5525 genes to identify genes significantly perturbed by A fkh1A fkh2 knockout. In this
data set we use log transformed ratios as the expression measurements instead of using
the ratios directly. The reason for doing this can be found in Discussion. The distribution
of MARD values of all the 5525 genes is shown in Figure 3.6A. We selected the top
100 genes with the highest MARD values which are listed in supplementary Table. 2.
Among these 100 genes, 41 genes are cell-cycle related genes according to the result

from Spellman et al. (p — Value = 4.9 x 10~'%). While comparing these 100 genes

69



with the results by Bar-Joseph et al. [BJGS™03], 13 genes show up in their top 30 cycling
genes and 9 genes show up in their top 22 non-cycling genes (p— Value = 5.7 x 10711).
Finally when comparing our results with that by Zhu et al. [ZSV*00], we find that
none of the up-regulated genes and 7 (p — Value = 7.2 x 10~7) of the down-regulated
genes identified by them are in our top 100 genes. Again a negative correlation between
MARD value and essentiality is observed which is shown in Figure 3.6B.

A fER1A fkh2 double mutation have global effects on cell growth. With this double
mutation, the cells show pseudohyphal and invasive growth, unusual cell morphology,
and slow growth rates [ZSV100]. Consistent with these phenotypes, many of the top
100 genes identified by our approach are involved in cell cycle, cell wall organization,
amino acid synthesis or pseudohyphal growth. For example, MEP1 (with rank of 76)
is an ammonium permease that regulates pseudohyphal differentiation in response to
ammonium limitation [LH98]. TEC1 (with rank of 43) is a transcription factor which is
involved in pseudohyphal growth [KWT*02]. This gene is also identified by Zhu et al.
but not by Bar et al. [ZSV100]. PCL2 (CLN4, rank 24) is a G1 cyclin which associates
with Pho85p cyclin-dependent kinase (CDK) to contribute entry into the mitotic cell
cycle and is essential for cell morphogenesis [MMO94, MAO4]. We also checked
the genome-wide binding data [LRR*02] that described the association of Fkhlp and
Fkh2p with genes expressed in G1 and S phases, and found 7 genes bound by Fkhlp
(p—Value = 0.014) and 15 genes bound by Fkh2p (p — Value = 4.3 x 10~®) in the top
100 perturbed genes. Table 3.5.2 lists the top 60 genes that appear to be substantially
perturbed in the fkh1A fkh2/\ double mutant. The Zhu, Bar column indicate that
whether a gene is identified by Zhu et al and Bar et al, respectively. FKH1 and FKh2
column indicate whether a gene is bound by the two transcription factors. As shown,

most of them are cell cycle related genes.
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3.6 Discussions and Conclusions

3.6.1 Measurement selection

As mentioned, the measurement for gene expression is ratio in the first data set (C'a®"
response w/o FK506 inhibition), while the measurement is log transformed ratio in the
second data set (A fkh1A fkh2/wtcellcycle). In the first data, we want to identify
calcineurin-dependent C'a®" activated genes as done by Yoshimoto et al. Although there
do exist some genes that are repressed by C'a®*, we are more interested in C'a®" acti-
vated genes as what Yoshimoto et al. did in their paper. So in order to make our results
comparable with Yoshimoto’s results, we reduce the influences of C'a®" repressed genes
by using ratio rather than log ratio as the measurement for gene expression. In such situ-
ation, the expression ratios for C'a®>" repressed genes are limited to [0, 1], while expres-
sion ratios for C'a®* activated genes are always greater than 1. Since we use Euclidean
distance in calculating the change in neighborhood, the genes identified by MARD anal-
ysis tend to be genes that activated by C'a®" in either FK506 treated or non-treated time
courses, and most C'a** repressed genes are ignored. We note that this is a special case,
in most cases we want to treat gene activation and repression equivalently and therefore

log ratio should be used as the gene expression measurement.

3.6.2 Neighborhood selection

To identify genes that are differentially expressed between treatment and control time
courses, we construct gene relationship networks for the the two time courses, respec-
tively. The genes substantially affected by the treatment are expected to show dramatic
changes in its neighbor genes. Essentially, here the neighbor genes refer in particular to
those genes that have small Euclidean distances with a specific gene, namely, proximal

neighbor genes. However if only proximal neighborhood changes are considered, one
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Figure 3.7: Effect of different neighborhood definitions and informative fraction q
(proximal only: proximal neighborhood; distal only: distal neighborhood; both: two-
end neighborhood). Zoom-in of the examined informative fraction q at interval [0.1%,
5%] is shown as an insert.

may fail to identify some co-affected genes because most of their proximal neighbor
genes are similarly affected by the treatment and therefore there’s no notable changes in
the neighborhood. To make up this problem, we take advantage of those distant neigh-
bor genes which have the largest Euclidean distances with the specific gene. We note
that there is no underlying biological relationship between these distant neighbor genes.
However, the distant neighbors of a gene tend to be from various function categories
and widely distributed in the relationship network. So the change in the relationships
between these distant neighbor genes and the specific gene may imply the global posi-
tion change of the gene in the whole relationship network, which can not be captured by
proximal neighborhood change. As shown in Figure 3.7, we studied the effectiveness
of the three neighborhood definitions (proximal only, distal only and two-end neighbor-

hood definition) while setting informative fraction ¢ to range from 0.1% to 50%. MARD
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analysis is performed on the C'a®* response time courses with and without FK506 treat-
ment. For each setting of the informative fraction ¢ and neighborhood definition, the
number of those genes that are among the top 142 genes in our result and also among
those calcineurin dependent C'a* regulated genes reported by Yoshimoto et al. is calcu-
lated to measure the effectiveness of each neighborhood definition. The result shows that
the distal neighborhood definition can achieve more effectiveness if a large g (> 4%)
is used. But when ¢ is small, the effectiveness of the distal neighborhood definition
is much worse than the other two definitions. In comparison, the proximal neighbor-
hood or two-end neighborhood can achieve good effectiveness across a wide range of
q. According to our experience of MARD analysis in various data sets, including two
data sets not reported in this article, we suggest using both-end neighborhood definition.
Our general strategy of selecting the fraction value q is as follows: first, we try MARD
analysis for q in a range, say [0.008,0.05] as used in the above cases; second, we look
for a stable set of genes that is invariant across the range of q values; third, we validate
the function of these genes by scientific facts reported in the literature; fourth, we make
further hypotheses based on the computational results. This strategy works well in the
examples we have analyzed so far. We hope this bioinformatic methodology will ben-
efit other researchers. We note that the informative fraction q for proximal and distal
neighborhood do not necessarily need to be equal in the two-end neighborhood. Further

improvement is expected by setting different values for them.

3.6.3 Metric selection

The relationship between genes can also be measured by other metrics besides the
Euclidean distance. For example, Pearson correlation is often used to measure the

similarity between expression profiles of genes, based on which gene co-expression
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networks are constructed and used to predict gene functions, infer transcriptional reg-
ulatory networks, and so on [VNSHO03, SSR*03]. In addition, comparing correlations
between genes across experiments has been proposed to further improve these stud-
ies [ZKH'05]. Generally, the correlation can be applied to infer the gene relationship
network in MARD analysis. But in practice, there are some disadvantages for using
correlation as the metric. First, most of the time course data contain only a small num-
ber (< 10) of time points, therefore it is inappropriate to use correlation to measure
the gene relationship. Second, several works have shown that co-expression network is
scale free in topology [VNSHO4, BO04], and the number of nodes with a given degree
follows a power law distribution. In contrast to “random” networks, scale-free networks
are highly non-uniform. In the gene co-expression networks, the hub genes have many
co-expressed neighbors, while most other genes have only a few neighbors. This feature
may be taken into account when correlation is used for the MARD analysis and some

revisions may be required.

3.6.4 Robustness of MARD analysis

Like many other methods, MARD analysis is also sensitive to noise in the data set to
some extent. For example, if an artificial high ratio is introduced by noise at one time
point in either treatment or control time course, the corresponding gene may result in a
high neighborhood change. Actually this is one of the main challenges of time course
analysis. In general, it is hard to discriminate real gene expression change from noise
effect because gene may be differentially expressed in only one time point in a time
course. The noise effect can be reduced by average the replicates for each time points
if replicate experiments are performed. Another way to reduce the noise effect is to
increase the number of sampling time points so that a more accurate gene relationship

network can be estimated from the time courses. We investigate the influence of time
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Figure 3.8: Distribution of MARD values from sampled data sets where a subset of time
points in treatment and control time course are used.

points in the second data set, where 18 and 13 time points are sampled in the wild type
and A fEkh1A fkh2 cell cycle experiment, respectively. We randomly choose 13 time
points from the wild type time course, and perform MARD analysis for the resulting
wild type and A fkh1A fkh2 time courses, both of which have 13 time points. Then we
randomly remove one time point from both wild type and A fkh1A fkh2 time courses
each time and applied the MARD analysis to the new data set. The rank of MARD value
for each gene doesn’t have significant change if similar number of sample time points
are used in the two time courses. For example, all the C}3 sampled 13/13 data sets (13
time points for either time course, Cj3 possible samplings in total) have a similar result
with the original 18/13 data set. The Spearman correlations are generally greater than
0.9 between MARD values of the sampled data sets and those of the original data set. If

only the top rank genes are considered, the results are even more consistent with each
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other. On the other hand, a clear shift of the distribution of MARD values was observed
when fewer time points are used, as shown in Figure 3.8. This indicates that estimation
of the gene relationship network is more likely to be influenced by noise when fewer
time points are used. We believe that MARD analysis is capable of giving more reliable

result with the improvement of microarray technology.

3.6.5 Significance level of MARD values

As so far, all the analysis and results show that the MARD statistics does reflect the
degree of perturbation of genes by a treatment. A higher MARD value implies a more
severe perturbation. However it is difficult to assign a significance level to an observed
MARD value because MARD values for all the genes are strongly dependent with each
other. For example, if a gene is substantially affected by a treatment, the MARD val-
ues of its neighbor genes will also tend to be large. In addition, it is hard to perform
permutation analysis for time courses as used in SAM [TTCO1]. In a static microar-
ray experiment, one permutates samples to “balance” the case and control data sets and
thereby estimate the false discovery rate based on the “balanced” data sets. But in time
courses data, different time points provide different aspects of gene expression. There-
fore it is inappropriate to permute the time points to calculate the significance level of

MARD for each gene.

3.6.6 Conclusion

We have developed a new method to identify differentially expressed genes between
treatment and control time courses. Rather than comparing gene expression patterns
in the two time courses directly, we construct gene relationship networks for each of

the time courses and then measure the neighborhood change of each gene in the two
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networks. The genes that are substantially affected by the treatment, i.e. differentially
expressed genes, are those that have a remarkable neighborhood changes.

We applied our method to both aligned and un-aligned time course data sets. The
results in the aligned data set show that (1) Genes with high MARD values exhibit
different expression levels between treatment and control time course in all or a subset of
time points; (2) The genes identified by our method are consistent with previous studies,
where additional well-designed experiments are performed to ensure the accuracy of
the result; (3) We also found some genes that are related to the pathway of interest but
failed to be identified by previous approaches. Our method avoids direct comparison of
expression pattern of genes between time courses, therefore it is insensitive to sampling
effect. We do not require equal or “aligned” sampling time points in the treatment and
control time courses. So our method can be used to compare time courses from different
sources as shown in the un-aligned wt/A fkh1A fkh2 cell cycle data set. In addition,
the MARD value can roughly reflect the importance of a gene in the cell system. Genes
with small MARD values tend to be house-keeping genes, most of which are essential

for cell survival.

3.7 Application of MARD on S.pombe stress response

data

In this section, we apply the MARD analysis on S.pombe stress response data. To
study the transcriptional response of fission yeast to environmental stress, Chen et al.
performed microarray experiment to characterize changes in expression profiles of all
known fission yeast genes in response to five stress conditions: oxidative stress caused
by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by

temperature increase to 39°C, osmotic stress caused by sorbitol, and DNA damage
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caused by the alkylating agent methylmethane sulfonate [CTM*03]. Under each stress
condition, a short time course microarray experiment is performed, including three time
points at 0, 15 and 60 min, in wild type, styl/A, and at f1A fission yeast. We combine
the expression profiles at 15 and 60 min in the five stress condition into a long time
course with 10 time points. The combination results in three time courses, correspond-
ing to wild type, styl/\, and at f1/\ fission yeast, respectively. Pairwise comparison of
the three time courses with MARD analysis is performed to understand the function of

Styl and Atf1 in stress response.

3.7.1 Transcriptional responses of fission yeast to stress

'
o

Figure 3.9: Sty stress response pathway in fission yeast.
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Exposure to low level of stress often results in a transient resistance to higher level
of the same stress, as well as to the other types of stress. The cross protection is
short-lived and requires new protein synthesis, indicating that changes in gene expres-
sion are critical. In S.pombe this phenomenon is a consequence of a common stress
response pathway, the Styl MAPK pathway, which regulates the responses to different
stresses [CTMT03]. It is known that in both budding and fission yeast, a similar core
group of genes response to all or most stresses. These genes are mainly regulated by
stress-specific mechanisms in budding yeast, whereas in fission yeast they response to
different stresses through the common Styl MAPK pathway. As shown in Figure 3.9,
Styl, a mitogen-activated protein kinase, is activated by WIS1 kinase in response
to stress, which then stimulates transcriptional responses through a number of bZip
transcription factor, including Atfl, Pcrl, and Papl [GDSP98, DSHT04, DSWN'05].
Among these transcription factor, Atfl is the most well studied. It is constitutively
localized in the nuclear and activated by Styl kinase through phosphorylation. Two
phosphatases, Pypl and Pyp2, act as negative regulator of the pathway by inactivating

the Sty kinase through dephosphorylation [NS99].

3.7.2 Results and conclusions

We perform MARD analysis to three time courses in a pairwise manner, which
results in three groups of MARD values, corresponding to stylA /wt, at f1A /wt and
stylA/at f1/\, respectively. The histograms of the MARD value in the three time
course comparison are shown in Figure 3.10. The histograms in sty1A /wt, at f1A Jwt
have long tails on the right hand, whereas the tail of the histogram in stylA/atf1A
is much shorter. This phenomenon can be explained by the fact that Styl kinase reg-
ulate the gene expression mainly through the transcription factor Atfl in response to

stress [GDSP98]. The high similarity of the MARD values in stylA /wt to those in
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Figure 3.10: Histograms of MRAD values in (A) stylA/wt, (B) atf1A /wt and (C)
stylA\/at f1A.

at f1A/wt is also shown in their scatter plot (Figure 3.11). As shown, most genes
follow into a high dense region in the middle part of the figure. These genes are not per-
turbed by the deletion of styl or atfl gene. The small group of genes in the bottom-left
corner are likely to house-keeping genes whose expression keep constant in different
conditions. Those genes that close to the top-right are of interest, which are substan-
tially affected by both styl and atfl. The genes that are substantially affected only by
styl or atf] are also what we are interested. For example, genes affected by sty but not
by atfl imply that transcription responses of these genes are regulated by Sty kinase
but independent of Atf1, which may through another transcription factor such as PCR1
or PAPI.

In Table 3.3, we list the ranks of MARD values for 49 genes in three time course
comparisons: stylA /wt, at f1A Jwt, and styl A /at f1/\. In general, if a gene has high
rank (small number)in both styl1A /wt and at f1A Jwt, it tends to have low rank (large
number) in stylA/atf1/A (see the pypl gene); if a gene has high in either stylA /wt
or at f1/\ /wt but low rank in the other, it is likely to have a high rank in sty1A /at f1A

(see the pyp2 gene). However, there are some special cases, such as the soul gene. It
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Table 3.3: Ranks of the MARD values for 49 genes in fission yeast.

ORF Hame shyl/wt atfiiwt  styhatf Function

SPACEETT .10 0Ll 1 av 22 zou1, short chain dehydrogess

SPCC285.05 2 391 150 conseryed praein

SPBCEBD.0S 3 1299 1 hypothetical protein

SPAC1SDS.M p2 4 3025 o] pypd, tyrosine phospletaze Pypl2

SPAC2EFT A0C [ o 5 2 2027 tywrosine phosphataze Pyl

SPAC1399.02 B 158 259 membrane transpotter

SPAC3IHT 06T 7 100 320 memkbtane transpoter (predicted)
SPAC2H10.M g 164 2216 tranzcription factor

SPAC4A5 05C ptcd 9 204 &0 protein phosphaase 2C Ptod

SPACUMKA Y 10 135 42 dehydrogese (predicted)

SPCC138512 1 7 1414 srgUence orphan

SPACIFE.06 ftas 12 g4 18 ttas, Sim 4 and Mal2 associated protein 5, smas
SPBCT131MC 13 1 944 P FOOST family

SPCCHE22.08 = 14 19583 2 k1, MAPK adtivated pratein kise Srkl, mkpl
SPACIAA 2 O6C 15 a5 255 zarine hydrolase

SPACAHI 0T 16 1245 16 glucan 1 4-alpha-glucosidase (predicted)
SPACIMIES 14 17 354 10 conserved fungal protein

SPACIF30E 18 29 06 conserved eukaryotic protein

SPCC4B310C ipk1 19 43 1085 inosital 1,34 5 B-pentakisphosphate (PS) kinase
SPCCTEFOSC X 133 2057

SPCC1020.09 A 50 1445 WD repeat protein

SPCCTH .05 X 10 27E9 hypothetical protein

SPECHAZONC cfl c] 22 1475 reticulon-like pratein

SPBCT13.02C ubpDyubp21 M 427 1350 ubiguitin C-terminal hydrolase Ubp2q
SPBPBZB2.02 ) hypothetical protein

SPEPBZB213 X g 15490 galadtokize (prediced)

SPBCEE0.06 X 1465 30 hypothetical protein

SPBRC1289.14 X adducin Miermil domain protein, SPBCSE4.10c
SPACE2AIT 02C A 1605 112

SPACTSET .02C 1l g2 avd

SPACZAMIZATC H 652 95 shott chain dehydrogerase (prediced)
SPACA3GT 30 ) 743 G458 R-hinding protein

SPBCEE4.05C = 284 S-carbouy-ci s cis-muconate cydoizom erase
SPCCOES 4T H ez 2005 cytosine deaminase (predicted)

SPAC2E6F1 142 =3 17 1043 apopt osisdnoucing factor homolog 21
SPBPB2B2.01 i 43 aming acid pennease family

SPBECT1Z2D1 2020 com kT D polyinerase defta subunit Cdm
SPCC1223513 = 276 233 [ binding protein jrferred from contest)
SPACEH10.02C = 1308 2205

SPACITEEOC 40 172 24 tiacghycerdl lipase

SPBECIZEA2C cocd 0 4 KTl 188 MBF tranzcription factor complex subunit Cdel 0
SPCC2E5.09C cgs poed 42 27a0 113 ch P -specific phosphodiesterase Cgs2
SPAC2EHIASC 43 73 BO7

SPACHGT.M 44 290 485 glycoprotein (prediced)

SPBCEHT .05C 45 23 145

SPACEST 3T 46 E54 40 cytoskeletal signaling protein

SPBRCIE.02C 47 4 1881 membtane transpoter

SPBRC409.08 45 525 1643 membtane transpoter

SPACEFEAT rifl 43 1831 49 1ifl, telomere length regulator protein Rifl, tagp
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Figure 3.11: Scatter plot of MARD values in sty1A /wt versus those in at f1A /wt.

has high rank in all the three comparisons, which indicates that expression of soul is
affected by both styl and atf1 by in a different manner.

Figure 3.12 shows the expression values of the genes that have high ranked MARD
values in stylA /wt. The left 10 bars correspond to the time course in wild type
and the right 10 bars correspond to that in sty1/A. From to left to right, these 10
bars represent the log expression values in HyO5(15min), HyO4(60min), Cd(15min),

Cd(60min), Heat(15min), Heat(60min), Sorb(15min), Sorb(60min), MMS(15min), and
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Figure 3.12: Expression values of 20 genes in wild type and sty1A fission yeast. These
genes have the top 20 genes identified by MARD analysis in stylA /wt time course
comparison.

MMS(60min), respectively. As can be seen, these genes that identified by MARD anal-
ysis do exhibit differentially expressed patterns between the wild type and styl1A time
course. Similar results have been obtained in MARD analysis for the other two time

course comparisons: at f 1A /wt and stylA/at f1A.
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Figure 3.13: Expression values of pypl and pyp2 in time course corresponding to wild
type, stylA and at f1A\, respectively.

Expressions of pyp1 and pyp2 are regulated by different mechanisms

It is known that two tyrosine-specific phosphatases, Pypl and Pyp2, negatively regulate
the activity of Sty1 kinase via direct dephosphorylation of the tyrosine residue phospho-
rylated by the Wis1 kinase. Among the two phosphatases, Pypl accounts for the major
cellular activity that dephosphrylates Styl kinase and Pyp2 plays a minor role [NS99].
Phosphatase activities of Pypl and Pyp2 are inhibited in stress conditions. MARD anal-
ysis indicates that pypl and pyp2 are under quite different transcriptional regulation in
response to stresses. Expression of pypl is substantially affected by both Styl kinase
and the transcription factor Atf1, with a rank of 5 and 2 in stylA /wt and at f1A /wt
time course comparison (in total, there are about 4410 genes), respectively. Whereas,
expression of pyp2 is substantially by the Sty1 kinase with a rank 4 in sty1A /wt com-
parison, but not by Atfl with a rank of 3025 in atf1A /wt comparison. Figure 3.13
shows the expression values of pypl and pyp2 in the wild type, styl/A and at f1A time

course. The stress conditions are arranged from left to right in the same order as above
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described. Based on our MARD analysis and the expression patterns of pypl and pyp2
in the three time courses, we may figure out the following hypothesis. First, in wild type
fission yeast, activation of the Stylp kinase pathway by stress leads to up-regulation of
both pypl and pyp2. Second, although Pypl plays the major role in dephosphorylation
of Sty kinase, expression of pyp2 increases (over 30-fold) much more than that of pyp1
(Iess than 2-fold)as a result of the stress response. That is, pyp2 plays the key role in
the negative feedback loop. Third, expression increase of pypl depends on both styl
and atf1; deletion of either of them cause significant down-regulation of pypl by up to
7-fold. Fourth, expression increase of pyp2 requires activity of Styl kinase but is inde-
pendent of Atfl. This may suggest up-regulation of pyp2 by Styl kinase is via another
transcription factor other than ATf1. Taking together, we may construct a regulatory

model for pypl and pyp2 as shown in Figure 3.14.

Stress

H

:
\@/

D

Figure 3.14: Function and regulation of pypl and pyp2 in the Sty1 stress response path-
way in fission yeast.

This model provides a good example that shows how delicate the natural designs

could be. In response to stress conditions, a group of genes are induced in fission yeast.
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Among them, there are some genes that negatively regulate the stress response path-
way, which ensures that the pathway can be rapidly shut down as soon as the stress has
been removed. To achieve this purpose effectively, both pypl and pyp2 are used. Pypl
phosphatase plays the major role in dephosphorylation of Sty1 kinase but expression of
pyp2 increases more in the negative feedback loop. Moreover, up-regulation of pypl
and pyp2, though both depending on Sty1, are via different transcription factors, which

enhances the robustness of the feedback loop.

Expression of pcerl is affected by styl but not by atf1
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Figure 3.15: Expression values of pcrl in time course corresponding to wild type, sty1/\
and at f1/\, respectively.

Pcrl is another bZip transcription factor that act downstream of Sty1 kinase in fission
yeast stress responses. MARD analysis suggests that expression of pcrl is dependent on
Sty1, but not on Atfl. The ranks of MARD values for perl in stylA /wt, at f A /wt, and
stylA/atf A\ are 103, 1599 and 7, respectively. Expression values of perl in those three
time courses are shown in Figure 3.15. These results indicate that Pcrl acts downstream

of Sty1 kinase in parallel with Atf1.
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Expression of srk1 is affected by styl but not by atf1
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Figure 3.16: Expression values of srk1 in time course corresponding to wild type, sty1/\
and at f1/\, respectively.

Srk1 is also a kinase that is involved in fission yeast stress responses. Previous
studies have shown that it presents in a complex with the Styl kinase and is directly
phosphorylated by Styl [STCT02]. Our MARD analysis results are consistent with
these studies. AS shown in Figure 3.16, expression of srk1 requires the activity of Styl
but in a Atf1 independent manner. The ranks of MARD values for srkl in in sty1A /wt,
at fAJwt, and styl /A /at fA are 14, 1983 and 2, respectively.

Expression of ptc4 is affected by both styl and atf1

Other than Pypl and Pyp2, type 2C serine/threonine phosphatase (PP2C) also involved
in dephosphorylation of hence inactivation of Styl kinase [NS99]. Interestingly, MARD
analysis indicates that expression of ptc4, the gene that encodes PP2C, is also up-
regulated like pypl and pyp2 as a result of stress response in fission yeast. The up-
regulation of ptc4 depends on both styl and atfl; the ranks of MARD values are 9
and 60 in stylA/wt and at f1A Jwt, respectively (see Figure 3.17). Therefore, the
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Figure 3.17: Expression values of ptc4 in time course corresponding to wild type, sty1/\
and at f1/\, respectively.

up-regulation of ptc4 may reveals another negative feedback loop in fission yeast stress
response. Moreover, other than stress response, PP2C is also involved in many other
pathways fission yeast. These findings imply a possible mechanism that connect stress

responses to other pathways.

MBF may link stress response with cell cycle regulation

In fission yeast, activation of the stress response pathway leads to a inhibition of entry
into mitosis. The stress response pathway also promotes commitment to mitosis in
unperturbed cell cycles to allow cells to match their rate of division with nutrient avail-
ability [CTM ™03, SP95]. The nature of the stress response pathway in cell cycle control
is not fully understood. Recently, several possible mechanisms have been proposed.
Lopez-Avilés et al. proposed that stress activated Srk1 kinase blocks mitotic entry by
phosphorylating and inhibiting Cdc25 [LAGG'05]. Petersen et al. suggested that Polo
kinase linked the stress pathway to cell cycle control and tip growth [Pet]. Our anal-
ysis implies that MBF complex may also involved in the mechanism that links stress

response to cell cycle control in fission yeast.
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Figure 3.18: Expression values of cdc10 and res1 in time course corresponding to wild
type, styl/A\ and at f1A\, respectively.

In eukaryotic cells, a key regulatory step of the cell cycle entry occurs at late G1,
which has been termed “Start” in yeast. Mitotic entry through Start requires the activity
of one or more cyclin-dependent kinases (CDKs) and also the transcription activation
of specific genes encoding products for S phase [WSDJ99]. In fission yeast, transcrip-
tional activation at Start is mediated by MBF complex. The fission yeast MBF complex
contains Cdc10p and at least two additional proteins, Res1p and Res2p, which bind to

Cdc10 at their C-termini. It has suggested that cdc10 plays both positive and negative
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roles in cell cycle gene expression [MKCF95]. Resl and Res2 are highly related but
functionally non-identical. The res1/\ cells have deficiency in mitotic cycle and a cold-

and heat-sensitive phenotype resulting in a G1 arrest [TOO92].

——> Cell Cycle

Figure 3.19: A possible mechanism that link stress response to cell cycle control by
MBE.

MARD analysis indicates that expression of cdc10 depends on both Styl and Atfl;
the ranks of MARD values are 41 and 37 in stylA /wt and at f1A Jwt, respectively.
Expression of resl also depends on Atfl activity but in a Styl-independent manner
with a rank of 122 for the MARD value in at f1A /wt. Whereas expression of res2 is
not affected by both Styl and Atfl. Figure 3.19 shows the expression values of cdc10
and resl in wild type, styl/A and atf1A time course. These results implies another
possible mechanism mediated by the MBF complex that links stress response to cell
cycle control. Note that the gene expression changes of cdc10 and res1 in response to
stress conditions are not large in magnitude, but their differential expressions in various
time courses are detected using MARD analysis. In some sense, this reveals that MARD
is more sensitive than the point-wise comparison method.

In conclusion, application of MARD analysis on the fission yeast stress response

data set reveals possible transcription regulatory mechanisms for many genes. Some of

92



them are already known thanks to previous studies. The others are still lack of exper-
imental evidences or literature supports. Therefore, the hypothesis based on MARD

analysis may provide us some hints and directions for future biological studies.
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Chapter 4

Integrative analysis of long-lived yeast

mutants

Microarray technology provides a powerful tool for biological studies. It measures
expressions of thousands of genes from samples at the same time. Despite its great
success, microarray technology has its own inherent limitations. For example, case and
control design is frequently used in microarray experiment to compare gene expression
profiles in different samples. To understand the underlying mechanisms of certain dis-
ease, typically we collect samples from both patients and non-patients, and then we per-
form microarray experiment to measure gene expressions in the samples. This is what
is so called case and control experiment design. For data sets from this kind of experi-
ment design, differentially expressed genes between cases (samples from patients) and
controls (samples from non-patients) are often identified, which provide us a list of can-
didate genes that are potentially related to the disease. The limitations in this kind of
studies are: first, it only gives us some genes that change expressions in diseased people
compared to healthy people, but diseases are often associated with changes in certain
pathways. So a differentially expressed gene list is not enough to infer the mechanism
of the disease and analysis in higher levels, i.g. in pathway level, is required. Secondly,
the differentially expressed genes are more likely to be a consequence or side-effect of
the disease rather than the causal genes which are of more interest. Thirdly, the dif-

ferentially expressed genes are those genes that are significantly changed in diseased
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people. But the strength of relevance is not fully determined by magnitude of expres-
sion change. A small magnitude of expression changes for important genes may cause
substantial effect.

In this chapter, we perform analysis for the microarray data from our yeast ageing
project [Pro]. Collaborating with the laboratory lead by professor Long, we measured
gene expression profiles of four yeast knockout strains, as well as wild type yeast. These
knockout strains result in significant life span extension with respect to wild types. The
goal of the project is to investigate the mechanisms of longevity in these strains. To
overcome the problems mentioned above, we emphasize the importance of investigating
expression changes in high levels, for example in pathway level. Moreover, we will
show how high level analysis is facilitated by integrating large scale public data sets
from different sources, such as Gene Ontology (GO), ChIP-chip, gene localization, and
so on. In this chapter, we will first introduce the background knowledge and theories
about ageing; then we will describe the integrative analysis for our microarray data set
and show how this analysis exposes a common mechanism of longevity in four long-

lived yeast knockout strains.

4.1 Introduction to ageing

Ageing occurs in organisms ranging from yeast to humans. It describes all the changes

that occur in the molecules, organelles, cells, tissues, and organs of an organism.

4.1.1 Theories of Ageing

A number of theories have been proposed to explain the mechanism of ageing. In the
following section, we will briefly introduce several of them. Note that these theories

provide different but overlapping viewpoints with each other.
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The free radical theory

The free radical theory of ageing was first proposed by Harman in the 1950s [Har56].
In this theory, he suggested that aging was a consequence of free radical damage.
Later Harman extended the idea to implicate mitochondrial production of ROS in the
1970s [Har72]. According to this theory,ageing of organisms are caused by accumu-
lation of free radiacl damages in protein, lipid and nucleic acids (DNA, RNA) across
time. Free radical attack on protein, lipid and nucleic acids leads to a reduction in their
respective function, thereby decreasing cell function, then organ function, and finally,
organismal function. In biochemistry, the free radicals of interest are often referred to
as reactive oxygen species (ROS). ROS are generated in multiple compartments and by
multiple enzymes in the cell. These enzymes that contribute to the generation of ROS
include plasma membrane proteins, such as NADPH oxidases; enzymes that involved
in lipid metabolism within the peroxisomes; as well as various cytosolic enzymes, such
as cyclooxygenases. Although all these sources contribute to the overall intracellular
ROS generation, the majority of them are produced in mitochondria, as by-products of

oxidative phosphorylation.

The disposable soma theory.

The disposable soma theory of ageing was first introduced by Weismann and later devel-
oped by Kirkwood et al. [Kir88, Kir92, Kir(02]. The basic idea of the theory is that cell
maintenance, such as DNA repair, protein turnover, and antioxidant defenses, requires
caloric energy. Competition of this with metabolic demands for energy have forced
natural selection into an optimization process which compromises between longevity
and growth or Reproduction. In most time, using extra energy to increase reproduc-
tive capacity will be more beneficial from an evolutionary standpoint, because it will

enhance the fitness of that individual. Therefore, organisms have evolved in such a way
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that the amount of energy invested in maintaining the soma is sufficient to keep the ani-
mal alive long enough to reproduce but less than that would be required to keep it alive
indefinitely. Consistent with this theory, trade-offs, such as decreased fertility or growth,
are observed in most but not all long-lived mutant organisms. However this theory con-

flicts with the fact that caloric restriction (CR) extends life span in many species.

The accumulated mutation theory

The theory was proposed by Medawar in 1952. The centrol idea of this theory is that
the force of natural selection decreases with age increasing [ParO1]. For a deleterious
mutation that manifests itself at a young age, there will be strong selection pressure to
eliminate it. But mutations that cause deleterious effect in later life of an organism, can
be passed from generation to the next and may accumulate in the genome due to the

weakness of selection force.

The antagonistic pleiotropy theory

The theory was proposed by Williams in 1957. It suggests that genes exist which have
beneficial effects early in life but harmful effects later in life. If these genes confer
increased reproductive success early in life, they would be selected despite the fact that
they may cause a decline in vitality late in life. According to this theory, we can deduce
that mutations resulting in life span extension would cause defects in growth or fertility.
However this is not always true. For example, some daf-2 mutants in C.elegans, survive

for more than twice as long as wild type but grow and reproduce normally [LFO03].

The programmed ageing theory

The programmed and altruistic ageing theory claims that ageing is programmed so that

organisms age and die to benefit related individuals or their group [LMSO05]. According
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to the theory, an ageing and death program that benefits closely related organisms can
be explained by kin selection; and death for the benefit of unrelated organisms can be
explained by group selection. Theoretically, ageing could provide long term benefits
at the group or population level that include population stabilization, enhanced genetic
diversity, a shortening of the effective generation cycle and acceleration of the pace of
adaptation [FBV104]. Local extinctions from overpopulation might facilitate a kind of
population-level selection that is strong and rapid enough to offset the individual costs

of programmed ageing.

4.1.2 Ageing in yeast
Replicative ageing

Replicative life span is defined as the total number of daughter cells generated by a
mother cell. For budding yeast, the mother cells reproduce asymmetrically by origi-
nating buds, which finally separate from the mother cells and grow into daughter cells.
The daughter cells are smaller than mother cells and can be easily recognized. The
mother cells become old and stop producing new buds after a certain number of divi-
sions. But the daughter cells do not inherit the senescence from the mother cells and
have the potential to live a full life span. To measure the yeast replicative lifespan, cells
are initially spread at low density onto growth medium agar and incubated to allow bud
emergence. Newly born daughter cells are micromanipulated to fresh areas of the plate.
The lifespan is determined by counting and removing the buds that they produce, until
they don’t bud any more.

The most commonly accepted explanation for the replicative ageing of yeast is
the accumulation of extrachromosomal ribosomal DNA circles (ERC) in old mother

cells [SMG97]. ERCs are self-replicating units produced in the nucleolus by rDNA
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homologous recombination. Because they segregate in a highly biased manner to mother
cells during cell division, they are accumulated in mother cells in proportion to the num-
ber of cell divisions. The segregation bias also assures that daughter cells are ERCs
free and therefore live a full life span. After a certain of cell divisions, the old mother
cells contains too many ERCs, which may interfere with cell growth by titrating essen-
tial replication and transcription factors and result in replicative ageing. In consistent
with this model, yeast proteins Sir2 has been suggested to slow the replicative age-
ing of yeast by repressing mitotic and meiotic recombination between rDNA repeats
and thereby preventing the formation of ERCs [PDG99, MMG99]. Over-expression
of Sir2 extends the replicative life span whereas the deletion of SIR2 gene decreases
replicative longevity [MMG99]. On the other hand, mutation of another protein Fobl,
which increase the accumulation of ERCs by facilitating rDNA recombination, extend
the replicative life span [DPK199].

To date, about 50 genes have been found to regulate replicative ageing. These
genes involve in different but interrelated biological processes, such as stress response,
genome stability, telomere function, energy metabolism, mitochondrial segregation and
so on. This reflects the complexity nature of mechanisms underlying yeast replicative

ageing.

Chronological ageing

The other system to measure yeast longevity has been developed by Longo’s labora-
tory [LGV96]. It measures the capacity of a population of non-dividng yeast to maintain
viability over time. Yeast can enter different non-dividing phases which depend on the
type and the level of nutrient available in the medium. In SDC medium, which contains
a limited amount of nutrients, yeast cells grow rapidly and then survive at high metabolic

rates for about six days. If yeast cells growing in SDC are switched to water between
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day 1 and 5, metabolic rates decrease and survival is extended by 2-3 fold. Incubation of
yeast in water can be viewed as a form caloric restriction. In SDC medium, yeast cells
enter a high-metabolic post-diauxic phase; whereas in water they enter a hypo-metabolic
stationary phase [Lon03]. Its seems that survival is regulated by analogous pathway and
mechanism in SDC median and in water, even though the cells are in different phases,
because long-lived mutants isolated by incubation in SDC also have a longer chrono-
logical life span when incubated in water. Therefore the chronological life span can be
measured in either system.

Replicative ageing model of yeast may be useful for understanding the aging of
dividing cells of high eukaryotes, while the chronological ageing model of yeast may
be informative of events in post-mitotic cells. Moreover, the chronological life span
models ageing of yeast in natural environment because it measures the survival of yeast
population in a non-dividing states. Despite of this difference, replicative ageing and
chronological ageing are highly related with each other. First, both forms of ageing are
characterised by a progressive deterioration in replicative potential that culminates in a
post-mitotic phenotype that may be termed senescence. Both forms of post-mitotic cells
exhibit surface wrinkling and an increased cell size [BS96, MKHSO03]. Second, chrono-
logically aged cells exhibit impaired replicative longevities and vice versa [ASGG99].
Third, most of the genes that effect on chronological ageing also involved replicative
ageing. For example, deletion of Sch9 gene leads to extension of both replicative life
span and chronological life. However, these two forms of ageing may have different
metabolism. First, some genes have converse effects on them. Deletion of Ras2 causes
extension of chronological life span but reduces the replicative life span [Lon03]. In
additional, It has been demonstrated that Sir2 activity correlates with yeast replicative

life span: SIR2 deletion strains are short lived, whereas strains that overexpress SIR2
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are long lived [MMG99]. Sir2 promotes replicative longevity by repressing the recom-
bination of repetitive ribosomal DNA (rDNA) and the subsequent formation of extra-
chromosomal rDNA circles (ERCs). Sir2 decreases chronological longevity, perhaps by
promoting DNA damage, inhibiting stress resistance, and/or inhibiting the activation of

the alcohol dehydrogenase, Adh2 [FGB*05].

4.1.3 Sch9, Ras2, Torl, Sir2 and ageing

Conservation and ageing

Mutations in genes that affect a wide range of biological processes have been found
to change life spans in model organisms. The biological processes include endocrine
signaling, stress response, metabolism, and telomere function, et al [Ken05]. In
Saccharomyces cerevisiae, about 50 genes have been identified as ageing related
genes [KKFKO04a, KKO5]. Despite their effect on ageing, these genes have different
functions. For example, Phbl and Phb2 encode subunits of prohibitin complex, which
is involved in mitochondrial segregation [PJB*02]; Dna2, Ctf4 and Rad27 encode pro-
teins that play roles in maintaining genome stability [HBC'02]; Lagl is involved in
ceramide biosynthesis [DCF"94]; Sodl, Sod2, Msn2, and Msn4 are stress response
genes; Hex2 encodes the hexokinase isoenzyme 2 that catalyzes phosphorylation of
glucose [KKOS5]. In addition, the effects of these genes on ageing are also dependent on
the genetic background of yeast strain and the type and level of nutrients in the medium.
Taken all these into consideration, it’s very difficult to explain ageing using a univer-
sal model. To understand the nature of yeast ageing, we must use some strategies to
simplify the problem.

One strategy is to take advantage of the conservation of genes that affect ageing

across different species. It seems that some genes are associated with ageing only in
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certain organisms. These genes obscure the common mechanism of ageing and com-
plicate the ageing studies. To overcome this problem, we may focus on processes or
genes that are found to be associated with ageing in different organisms. One may argue
that the causes of aging are not likely to be conserved from one organism to another,
because they are not adaptive. This claim is true. Ageing factors may not subject to
natural selection directly for the lack of selection force. However, the regulation of life
span in response to environmental conditions is adaptive and therefore very likely to be

conserved.

Calorie restriction and ageing

Following this strategy, we may center our attention to calorie restriction (CR) and three
relevant gene or gene groups. CR has been shown to achieve extension of life span in
a broad spectrum of organisms ranging from yeast to mammalian [LDG00, IAdC*04].
The animals under CR are characterized by lower body temperature, lower blood glu-
cose and insulin level, and reduced body fat and weight [KGO03]. The CR animals
also appear to be more resistant to external stresses, including heat and oxidative
stress [SW96]. Evolutionarily, CR may represent adaptation to scarcity in a boom and
bust cycle. Any organism that could slow ageing and reproduction in times of scarcity
and remain able to reproduce when food reappeared would enjoy a competitive advan-

tage over neighbors that could not [HA89, GP0S5].

Sir2

Despite the controversy and uncertainty, three genes or gene groups may be relevant to
CR. The first gene is Sir2 [RHO04, Gua05]. Previous studies have shown that the life

span of short-lived strain lacking Sir2 can not be extended by CR, which imply that Sir2
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is required for life span extension by CR [LDGOO0]. Other evidences have been pre-
sented to show that CR and Sir2 act in different genetic pathways to promote longevity
and that Sir2 is not required for full life span extension in response to CR [KKFKO04b].
Later Lamming et al. reported that CR fails to extend life span in a strain lacking both
SIR2 and HST2 at 0.5% glucose. They concluded that CR extends life span by reduc-
ing rDNA recombination and ERC formation in a SIR2- and HST2-dependent fash-
ion [LLEM 05, LLEM™06]. But another group obtained a conflicting result using the
same genetic background. Their result shows that CR is still able to extend life span both
in yeast strains that lack Sir2, Hst2, and Fob1 and in yeast that also lack Hst1 [KSHT06].
Although the relationship between Sir2 and CR may continue to be debated, it is gen-
erally accepted that Sir2 plays some roles in ageing in different organisms. An extra
copy of Sir2 extends yeast replicative longevity by 40% by reducing both rDNA recom-
bination and the accumulation of extrachromosomal DNA circles (ERCs) [MMG99].
Conversely, the deletion of SIR2 dramatically decreases replicative life span [MMG99].
Fabrizio et al. indicated that the effects of Sir2 on chronological life span are oppo-
site to replicative life span. They suggested that the lack of Sir2 along with calorie
restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a
dramatic chronological life-span extension [FGB™05]. In C. elegans, dosage of the SIR2
ortholog, sir-2.1, increases the mean life span by up to 50% [HATGO1]. In flies, the Sir2
ortholog, dSir2, has been reported to extend life span as well [RHO04]. In addition, life-
span extension by CR is blocked in strains lacking dSir2. These findings suggest that

CR works through a Sir2-dependent mechanism in this organism.

RAS/cAMP/PKA pathway

The second group of genes that are relevant to CR includes TOR, PKA, and SCHO. It

has been shown that at either 0.5% or 0.05% glucose, CR extends life span of yeast in a
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Figure 4.1: Longevity regulatory pathway in five organisms. The figure is copied from
Longo et al.(NATURE REVIEWS GENETICS, Vol. 6, 866-872).

manner dependent on the nutrient-responsive kinases, TOR, PKA, and SCH9 [FPP'01,
KPS*05]. Mutations that result in decreased activity of PKA, Sch9, or TOR increase
both replicative and chronological life span. Moreover, the long replicative life span of
TOR and Sch9 deletion strains is not further increased by calorie restriction [KPS™05],
suggesting that TOR and Sch9 might mediate replicative life-span extension by calorie
restriction [KSKO5]. Of more importance, mutations that decrease the activity of the
orthologous proteins (Tor and Akt) in worms and flies also extend life span, suggesting
that these kinases share an evolutionarily conserved role in responding to nutrients and
growth factors.

In yeast and higher eukaryotes, TOR, Sch9, and PKA coordinate signals from nutri-
ents and growth factors to regulate ribosome biogenesis, stress response, cell size,

autophagy, and other cellular processes. This represents a common longevity pathway
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that is conserved from yeast to mouse as shown in Figure. 4.1. As have been men-
tioned, down-regulation of the pathway results in longevity in organism from yeast to
mouse. For example, mutations that decrease the level or activity of IGF1 in mouse
extend lifespan by up to 65% compared with that of the wild type. Conservation of the
longevity regulatory pathways suggests that at least part of these pathways evolved from

a common set of starvation-response genes in the ancestral organisms.

Stress response genes

The third group of genes includes some genes downstream of the longevity regulatory
pathway, such as Msn2, Msn4, and SOD genes. The effect of these stress responses
genes have been studied in different organisms. In yeast, over-expression of Sodl
and Sod?2 increases the life span by about 30%. In C.elegans, life span of wild type
worms can be extended if they’re treated with small synthetic SOD/catalase mimet-
ics [MRM™100]. In M.drosophila, over-expression of Sodl increases survival rate by
up to 40% [PED"98]. Although stress response genes may play important roles and
sometimes are essential for longevity (i.g. Sod2 is required for life span extension
in Sch9A) [FLM*03], they are likely to act as the effectors of the above mentioned
longevity pathway.

In our ageing project, we focus our attention on four genes: Sch9, Torl, Ras2, and
Sir2. Ras2 encodes a GTP-binding protein, which stimulates the production of cAMP by
adenylate cyclase and therefore is a positive regulator of the PKA activity. We produced
four long-lived yeast knock-out strains: sch9A, torl A, ras2/\, and sch9sir2/A. Then
we measured the gene expression profiles in these strains. By integrating other public
available data sources, we performed computational analysis on the microarray data.
We hope our work can shed light on the underlying mechanisms of longevity in these

strains.
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4.2 Materials and methods

4.2.1 DNA Microarray hybridization and data processing

Yeast were grown in SDC medium containing 2% glucose and supplemented with amino
acids, adenine, and uracil for two and half days. Then cells were collected from wild
type, sch9A, ras2/\, torl/\ and sch9sir2/\ strains. They were used to extract total
RNA according to the acid phenol method.

Total RNA from independent cultures of each strain was used as a template to
synthesize complementary RNA (cRNA) and the cRNA was hybridized to Affymetrix
GeneChip Yeast2.0 Array. For each of the five strains, three replicate arrays were gen-
erated, of which each corresponds to RNA obtained from independent population. All
the replicates for the same strain are highly consistent with Pearson correlation coef-
ficients greater than 0.96. The probe-level data was normalized using “Invariant Set”
method. The expression levels of all probe sets were calculated using “Model-Based
analysis of Oligonucleotide Arrays”’[LWO01la] with “PMonly” PM correction. Biocon-
ductor affy package software was used for the analysis(http://www.bioconductor.org/).
Note that we did not use the Sub-Sub method to do normalization for the data, because
the chips used in this study, Affymetrix Yeast2.0 Array, contains probes from two yeast
species: S.cerevisiae and S.pombe, which make it inappropriate to apply our normaliza-
tion method.

The Yeast2.0 Array contains probe sets for both S.cerevisiae and S.pombe. Only
probe sets from S.cerevisiae are used in later analysis. Gene expression change were
calculated between two strains using pairwise comparison. So 3 X 3 comparisons result
in 9 ratios, which are averaged to get the mean fold change (FC). Fold changes of all
the S.cerevisiae probe sets were calculated for comparisons: sch9A Jwt, ras2A Jwt,

torlA/Jwt, sch9sir2/A/wt, and sch9sir2/\/sch9/\. Most genes correspond to only
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one probe set in Affymetrix GeneChip Yeast2.0 Array and the average fold changes

were used for genes with multiple probe sets.

4.2.2 Gene Ontology analysis

GO information was downloaded from “ftp://genome-ftp.stanford.edu/pub/go/ontolog-
y/” based on data at July 29, 2005. Yeast gene annotation data was downloaded from
“ftp://genome-ftp.stanford.edu/pub/go/gene_ association/”. The data structure for gene
ontology (GO) is directed acyclic graph (DAG). Each node in the DAG is a set of
genes with given annotations. Nodes that are closer to the terminal have more detailed
annotation and thereby are more informative. To avoid redundancy and overlapping
between GO nodes, we identified 44 cellular components, 53 molecular functions and
109 biological processes informative nodes from the GO DAG. Terminal informative
nodes are defined as those nodes that are closest to the terminal and have at least 30
genes. The GO categories that associate with terminal informative node is defined as

terminal informative GO categories (TIGO).

In general, to test whether a priorly defined set of genes S is significantly affected
in a mutation strain(e.g., sch9/\), we applied a similar method as the Gene Set Enrich-
ment Analysis[STM*05]. We rank the log transformed fold changes of all genes in
sch9A Jwt, which results in a ranked list G. If S is not significantly affected, we would
expect that the members of S are randomly distributed throughout G. Otherwise we
claim that S is significantly affected. If most members of S are found at the top of list
G, we define it as positively affected gene set. Conversely, if most members of S are
found at the bottom of list G, we define it as negatively affected gene set. In practice,
we simply compare the fold changes of genes in .S with those in G — S using Wilcoxin

rank test. Here the gene set S can be a GO category, genes related to pathway, genes
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bound by a transcription factor, or genes localized in the same organelle. To guarantee
a reliable result, we only apply this test to gene sets with at least 10 members.

Based on the method described above, we calculated p-values for all the defined
TIGO categories. Then we performed multiple testing correction using method intro-
duced by Storey et al. [ST03]. The g-values were computed using ’qvalue” package
provided in R software (http://www.r-project.org/). We compared our results with those
obtained by running the web program: GOstat (http://gostat.wehi.edu.au/) [BS04]. They
are in good consistency. By taking only the terminal informative GO categories rather
than all the GO nodes, our method avoids the redundancy problem and the results are

easier to be interpreted.

4.2.3 Pathway analysis

To understand the mechanisms of ageing, it is helpful to find out which pathways
are changed in the long-lived mutants, which motivates us to identify the signifi-
cantly affected pathways. We downloaded the pathway data set from KEGG database:
http://www.genome.jp/kegg/. The data set includes 102 S.cerevisiae pathways in total.
To identify significantly affected pathways in each strain, p-values and g-values were
calculated for each pathway using methods described above. Here, all the genes belong

to a pathway forms a gene set.

4.2.4 Cellular organelle analysis

Here we regard genes with the same cellular localization as a gene set and performed
the analysis described above. The cellular localization data was downloaded from
http://yeastgfp.ucsf.edu/. In this data set, ,75% proteins were classified into 22 distinct

subcellular localization categories, including mitochondria, nucleus, nucleolus, vacuole,
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vacuole membrane, budding neck, etc. It is known that some organelles, such as mito-
chondria, play a central role in ageing of yeast. We hope that the cellular organelle anal-
ysis would provide some information about yeast ageing in the sub-cellular (organelle)

level.

4.2.5 ChIP-Chip based transcription factor analysis

It is often difficult to determine whether the activity of a transcription factor is changed
or not according to its expression level in a microarray data. Because, first the activ-
ity of a transcription factor is often regulated in protein level, i.g. by phosphorylation
or translocation, rather than in mRNA level; Secondly, transcription factors are often
expressed in a low level, which makes it difficult to detect the expression changes of
them due to the high noise in microarray data. As such, we have to apply an indirect
strategy to identify the affected transcription factors by investigating the target genes
that are regulated by the transcription factor. In yeast, large scale studies have been
performed to identify the interactions between transcription factors and genes by using
ChIP-Chip experiment. Here we use this valuable data source to infer significantly
affected transcription factors in the four long-lived mutants. We downloaded the Chip-
Chip data set from http://web.wi.mit.edu/young/regulatory_code/. It contains gene bind-
ing information for 203 transcription factor (TF), where each TF-gene association was
assigned a p-value. We set the threshold to be 0.001, which corresponds to a false pos-
itive of about 4% and a false negative of about 25%[HGL*04]. Again the target genes
for each TF were regarded as a gene set and the significantly affected TFs are identi-
fied using the methods described above. Our method is relatively robust to the noise in
Chip-Chip data, because when we lower the threshold for TF-gene association down to

0.01, we obtain very similar results.
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4.2.6 Motif enrichment analysis

The previously described transcription factor analysis has a major limitation, because
the target genes regulated by a TF is determined based on ChIP-Chip experiment. The
cells for ChIP-Chip experiment were cultured in YPD medium at log phase, whereas the
cells in our microarray experiment were grown in SDC medium and collected at day 2.5.
As we know, the gene set regulated by a TF could be different in various conditions. To
overcome this problem, we perform motif enrichment analysis which takes advantage
of the sequence information in the regulatory region of all genes. Basically, we analyze
the enrichment of a motif in the up- or down-regulated genes. Those enriched motifs are
likely to be the regulatory binding sites of TFs that cause the up- or down-regulation.

We use AlignACE with 12 bp motifs, and search up to 800 bp upstream of
each gene in S. cerevisiae.  After removing the redundancy, 666 motifs were
obtained, including 51 motifs with known binding transcription factors.  For
each gene, the upstream motifs, motif orientations and scores were recorded.
Refer to Beer et al. [BT04] for details and the motif data is available at
http://genomics.princeton.edu/tavazoie/Supplementary %20Data.htm.

To identify the enriched motifs in a given gene set of size K, we used hypergeometric
test. Suppose there are totally M genes with a given motif, and the rest N genes don’t
have this motif (in total there are M+N genes). Let X be the number of genes in the gene

set that contain the motif, then X ~ hyper (M, N, x). That is:

M N
T K—=x
p(M,N,z) =
M+ N
M
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The P value for an observed x is Pr(X > x|M, N), namely, the probability of observing
at least x genes with the interested motif by chance. We calculated the p-values of all
the 666 motifs in the up-regulated gene set and down-regulated gene set. Then multiple
testing correction was performed and g-value was computed for each motif using the
“qvalue” package provided in R software. An arbitrary threshold of 2 (fold change) was

used to determine up- or down-regulation.

4.3 Results

4.3.1 Similarity of gene expression profiles in the long-lived mutants

ras2A / wt
sch9sir2A / wt

torlA / wt

torlA / wt

sch9sir2A / wt
sch9sir2A / wt

ras2A / wt ras2A / wt torlA / wt

Figure 4.2: Similarity of gene expression profiles in the four long-lived mutants:
Sch9A, Ras2/\, Torl/A and Sch9Sir2A.

We collected the RNA samples at day 2.5 from S.cerevisiae wild type and four long-
lived mutant strains: sch9A, ras2/\, tor1l/\ and sch9sir2/\. The expression levels

for 5841 genes were measured using Affymetrix GeneChip Yeast2.0 arrays. Then we
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calculate the log transformed fold changes (log ratio) for all genes in the four mutant
strains versus in wild type, respectively. These calculations result in an expression pro-
file for each mutant, which reflects the gene expression change in the corresponding
mutant with respect to the wild type strain. As shown in Figure 4.2, the expression
profiles of the four long-lived mutants are highly similar to each other. This may imply
that deletion of sch9, ras2, torl or sch9sir2 influence a common set of downstream
genes. Previous study has proposed that protein Sch9, Torl and Ras2 control a molecu-
lar switch that regulates the response to nutrient availability [REM™05]. Therefore, the

similarity of expression profiles of them is more or less expected.

4.3.2 Differentially expressed genes in the long-lived mutants

By arbitrarily setting 2 as the threshold for up- and down-regulated genes, we found
147, 324, 132, 304 up-regulated genes (log ratio > 2) and 130, 364, 60, 425 down-
regulated genes (log ratio < 2) in sch9A, ras2/A\, tor1/ and sch9sir2/\ strain with
respect to wild type, respectively. Among these genes, 65 up-regulated genes and 24
down-regulated genes are shared by all these four mutants (see Table 4.1 and Table 4.2).

It was suggested in previous studies that Ras2, Torl and Sch9 are all involved in
low nutrient response and adaptation, in which the PKA kinase plays an important
role [REM*05, ZMCO05, PDC*03, Lon03, CCL*99]. Consistently, we find many of
the common up-regulated genes in the long-lived mutants are functionally related to
this pathway. In all the four long-lived mutants, expressions of Hxt2 and Hxt4 are up-
regulated. It is known that these two genes encode high-affinity glucose transporters of
the major facilitator superfamily whose expression is induced by low levels of glucose
and repressed by high levels of glucose [0J95, OJ99]. The increase of their expression

may facilitate the transport of glucose into yeast cells from medium. Another gene,
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Table 4.1: The common up-regulated genes in the four mutants.

Hame Function schiiiwt ras2iwt torliiwt  seh¥sir2iiwt
ANTI Peroxizomal adenine nud eotide transpoter 213 273 2.0 2.30
ARNZ Tranzporter 2.14 237 251 276
ATGIE Irwalved in the cvtoplasmio-vacualetargeting pathuay 4.51 265 3.86 34
Blod Drethiobiotin syrthetase 225 2325 204 232
ECM4 Mon-essential protein of unk nown fundion, similar to YoriSdcp 245 2.25 2.33 215
ERGS C 4 methyl Seral oxidasze, 250 212 254 227
ERGS C-22 sterol desaturass 5.09 544 427 518
FIYR45 R equired for viahility in stationary phaze 492 220 4.50 5.51
GNOZ B-phosphoduconste dehydrogensss 249 31 2.25 3.00
RO MAD dependent glycerol-3phosphate debydrogenase 249 2958 2458 253
GRIWZ Homolog of Gom 1 p phosphoglycerate mutass 2.81 252 415 263
ERED Stresz induced | regulated by the HOG pathwey 527 522 416 .54
HaTnl Substrate of the Hub1p ubiquitin-like protein 5.08 569 347 .19
M 2 2H2 zinc-finger pratein 4.03 249 254 2.7
HXTZ High-affinity glucose tranzporter of the major facilitator superfamily 444 2497 470 .63
HXTE High-affinity glucose transparter of the major facilitator superfamily 272 434 218 355
Ly Lnknawan 227 219 223 263
SR Felll-dependent sulfonsteal pha-ketoglutarate diooygenase 257 2585 278 .00
MCH2 Protein with similarity to mammalian monocarboxodate permesses 344 218 2.06 247
MFRAZ Mating pherom one a-fador 2.23 255 2.64 217
M= Irrvalved in repression of SUC2 by high levels of gucoss 4 96 G.46 3.4 6.7
POCE Minor izoform of pyruvate decarboxdase 745 1063 T.56 973
PHWE Lnknican 249 223 245 5.00
iR O-glycosylated protein reguired for cell wall Sakbility 3.09 261 2.33 3.54
Fia 2 Plazma membrane H+-ATPase, isoform of Pmalp 794 5.55 6.35 10.22
PO I-ketoacylLCob thiolass 3.25 5.80 247 543
PRH22 Catabdic zuburit of protein phosphataze 28 216 230 202 222
R Putative transcriptional regulator 3.28 4.49 255 4.45
RPLIZA /B Pratein component of the large (603] ribosomal subuni 257 203 281 229
RPL18AYE  Protein com ponent of the large (60S] ribozsomal subunit 2.E0 255 2.7 253
RPLZE Protein com ponent of the large (603 ribosomal subunit 2E7 221 287 274
RPLZZE Pratein com ponent of the large (60S] ribosomal subunit 2.59 246 2.25 2.59
RPLZER Protein com ponent of the large (603 ribosomal subunit 224 221 230 2
RPS0A Pratein com ponent ofthe small (405] Abosomal subunit 249 213 2.33 2.44
RTNZ Lnknowrn 378 419 304 479
SREO0 R equired for spore well maturation, expressad during sporlstion 10.03 1417 453 1679
STBRZ Part of a large pratein complex with Sin3p and Sthip 213 213 220 253
THI Thiamine biosynthesis and mitochondral genom e gahility 364 EAT 4.80 5.
Eh mPR M Abinding protein expressed during iron starvation 346 277 256 346
TRI2 Transketolaze, similar to Tk p 255 337 242 360
TR Subunit of ctoplasmic cAlMP dependent protein kinase 247 247 237 272
XLz Wlitol dehydrogenass 327 348 2.35 647
YALRITCA  Unknown 3.32 763 239 427
YALAZAMLA  Unknown 272 2487 291 245
YERMZY  Mitochondia protein 445 242 293 233
YBROFIY  Unknown 445 328 33 3.40
YOLRSFIY Unknown 316 349 282 3.50
YOI2181 Unknown 26.63 4220 .11 53
YORI3EMLE Unknown 291 377 306 KRN
YORZZ21Y Unknown 385 542 223 4 54
YERIZEK  Unknown 37 405 3.08 4.00
YizRIS4C  Omega-dass dutathione transterass 214 396 214 260
YHLOZEC LInknasan 265 2m 208 229
YHATZ01  Unknown 314 7.34 275 477
YURGZE0 LInknasan 2.04 2.44 218 2.56
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Table 4.1: Continued

Hame Function sthdiint ras? et o2 0wk schdsin? Aowt
YELOSOC I nknoran 344 4.54 22 5.4
YELJO07 Y I nknoran 322 3.40 289 514
VLLOSES Unknoean 257 539 236 3.m
YLROHA Inknotan 245 2119 233 2.4
YLRIELIY Homologousto TIM1SR 4.3 5.27 4.09 7.3
YLRZEIC U nknoran 285 391 259 372
VIRSMES I rknoran 251 226 274 215
WA TS I nknonan .22 aar m 10.42
YR2E 1Y Omega class glutathione transtersse 323 258 229 417
YOR 18614 I nknoran 240 5.58 364 5.8

Rpil, is also up-regulated in all the mutants. The protein RPI1 is an inhibitor of the Ras-
cAMP pathway, whose over-expression suppresses the heat shock sensitivity of Ras2
over-expression in wild type. Thus, up-regulation of Rpil may enhance the stress resis-
tance in these mutants which may contribute to the life span extension.

Interestingly, we found that the expression level of Tpkl, which encodes one of the
subunits of cAMP dependent kinase PKA, is decreased in all the mutants. This is out
of our expectation, because RAS?2 positively regulates the PKA kinase activity and we
may expect a down-regulation of the genes that encode subunit of protein kinase PKA.
The contradiction may reflect the gap between gene expressions and protein activities.
Deletion of Ras2 gene causes repression of the PKA pathway by regulating the protein
activities. Whereas in the gene expression level, there may be a negative feedback which
increases the expression of genes encoding subunits of PKA kinase. On one hand, the
regulation in protein activities is more sensitive than that in gene expression levels. On
the other hand, negative feedback is often used to ensure that a pathway can be shut
down when the signals are removed. The regulation the PKA pathway by Ras2 may
be more complicated and elaborated than what we have thought. Additionally, the high
similarities between the expression profiles in the four mutants are interesting. Ras2,
Torl and Sch9 may regulate the nutrient responses through a common or at least a

related mechanism.
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Table 4.2: The common down-regulated genes in the four mutants.

Hame Function sthiiiwt ras2iiwt torliwt  schisir2iiwt
ADgz Miitochon drial ad enylate kinase S22 S3EG -256 -284
AERZ Miitochon drial protein -2 -2a8 -224 283
ClrA? Call vuall mannopratein -3.E8 -2 55 -2.00 225
e e Protein kinase inwvohred in bud gromth and assembly of the septin ring -3.23 -2ET -2AaT pck=c
sz Mitachondrial ribos omal protein of the small subunit -2 -3.28 -202 So2
=R Binds DM containing intrast and cross-links formed by csplatin -2a0F -3.13 -207 227
HTRE Putative mannosyttrarsferas e imoobeed in protein ghycosylation ECRe & S2EG -2.07 pelac]
RA1a Miitachon drial ribosomal protein of the small subunit -2 -2E8 -2 -2.84
=ALAT Mitochondrial ribos omal protein of the large subuni -20s -2 -201 -2
JT e ] Mitochondrial ribos omal protein of the large subuni -235 -3.480 -23T -2 54
=ALT Mitochondrial rib oz omal protein of the large subuni 222 -288 S213 -2.53
WRALD Miitochon drial rib oz omal protein of the large subunt S22 S22 -2.00 -228
WRPsE Miitachon drial ribosomal protein of the small subunit -2 -227 -2 -2e5
ongs Protein integral to the mitochondrial membrane -2.80 pcRcr) S22 -39
REfR Mitachondrial ribos omal protein of the small subunit -206 -312 -2 6 S2E5
TAHH HEPE0 cofactor -503 -4E3 -53.451 673
T Mitochondrial intermembrane space protein -2a82 -3 -207 pcr
FELODAN-A  TyB GagPol protein -2.47 -2E8 -280 -4.80
YIRS AN Uk ncuan -2 -2.496 S22 -2.48
YL 0BG Uk ncunn -2 ke -2.91 -275
YOl The authentic, localized to the mitochon dria =300 =396 223 -3
YLAROYVED Unk nowun R -11.33 -5.94 -13.05
el Unk nowun -207 -2.25 -2.40 S22
YRR Uk ncunn -2 S22 -2.32 -2.72

In the common down-regulated genes (see Table 4.2), 13 out of these 24 genes
encode mitochondria proteins that include 8 mitochondria ribosomal proteins (RP). It
is known that mitochondria plays an important role in ageing. Down-regulation of mito-
chondria genes implies that the dependence of cells on mitochondria is reduced in the
long-lived mutants. In contrast to the down-regulation of mitochondria RP genes, the
cytosolic RP genes tend to be up-regulated. In the 65 common up-regulated genes, 6
are cytosolic RP genes. It has been suggested that TOR1 regulates RP gene expression
via PKA pathway and inhibition of TOR1 protein by rapamycin causes repression of
RP gene expression [MSHO4]. It is interesting to see that expressions of cytosolic RP
genes are up-regulated in 7'or1/A mutant. It is possible that TOR1 may not be essential
for expression of RP genes and the up-regulation of RP genes in T'or1A is caused by
proteins that have redundant functions with TOR1. Alternatively, it could be simply a

consequence of the delay of ageing in the long-lived mutants. The expression of RP
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genes decreases after cells enter the stationary phase during ageing. Since the ageing is
delayed in the long-lived mutants, the cells from the mutants are “younger” than those
from the wild type collected at the same day. In comparison with the “elder” wild type
cells, the expression of RP genes in “younger” mutants are less reduced and therefore
appear to be up-regulated.

The overlapping between the differentially expressed genes in the four long-lived
mutants is shown as venn diagrams in Figure 4.3. As can be seen, both the up-regulated

and down-regulated genes in these mutants are highly overlapped.

4.3.3 Significantly affected GO categories in the long-lived mutants

To understand the mechanisms of longevity, we would like to know which function
categories are changed in the long-lived mutants. The Gene Ontology (GO) project has
developed three structured, controlled vocabularies (ontologies) that describe gene prod-
ucts in terms of their associated biological processes (P), cellular components (C) and
molecular functions (F) in a species-independent manner [Ont]. A cellular component is
just that, a component of a cell, but with the proviso that it is part of some larger object;
this may be an anatomical structure (e.g. rough endoplasmic reticulum or nucleus) or a
gene product group (e.g. ribosome, proteasome or a protein dimer). A biological pro-
cess 1s series of events accomplished by one or more ordered assemblies of molecular
functions. Molecular function describes activities, such as catalytic or binding activi-
ties, at the molecular level. It can be difficult to distinguish between a biological process
and a molecular function, but the general rule is that a process must have more than one
distinct steps.

The GO uses a directed acyclic graph (DAG) to represent the hierarchical structure
of gene function categorization. In the DAG, each node includes a set of gene with

the same function terms. The terms that associated with a node closer to the terminals
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Figure 4.3: Overlap of up-regulated (numbers over the line) and down-regulated (num-
bers below the line) genes in the four long-lived mutants: Sch9A, Ras2/A\, Tor1/A and
Sch9Sir2A.

are more informative. To avoid redundancy and low informativeness, we selected only
those GO categories that are closest to the terminal in the DAG and contain at least 30
genes. We denote these GO categories as terminal informative GO categories (TIGO).
Totally, we selected 44 cellular component TIGOs, 53 molecular function TIGOs and

109 biological process TIGOs from S.cerevisiae. From them, we identified some TIGOs

117



that are positively affected (see Table 4.3.3) or negatively affected (see Table 4.3.3) in
at least one of the long-lived mutants. Totally there are 7 cellular component TIGOs, 4
molecular function TIGOs, 8 biological processing TIGOs that are positively affected
and 19 cellular component TIGOs, 12 molecular function TIGOs, 28 biological pro-
cessing TIGOs that are negatively affected in at least one the comparisons: sch9A /wt,

ras2A Jwt, torlA Jwt, and sch9sir2/A /sch9A.
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Positively affected TIGO categories

Our TIGO analysis shows that the GO categories that are associated with cytosolic large
ribosomal subunit (GO:0005842) and cytosolic small ribosomal subunit (GO:0005843)
are positively affected in all the long-lived mutants. Namely, genes that belong to these
categories tend to be up-regulated in the mutants with respect to the wild type. The GO
category associated with monosaccharide catabolism is also positively affected. Genes
in this GO category are involved in chemical reactions and pathways that result in the
breakdown of monosaccharides, polyhydric alcohols containing either an aldehyde or a
keto group. This may reflect the enhancement of cells from the the mutants to consume
glucose in the medium. Although most of the TIGOs are similarly affected in the four
mutants, some of them are specifically affected in certain mutants. For example, the GO
category associated with cell wall is negatively affected (notable but not significant)in

the sch9/\, but positively affected in the all other three mutants.

Negatively affected TIGO categories

More TIGO categories are negatively affected in the long-lived mutants, which include
categories that are associated with aerobic respiration (GO:0009060), mitochondria
organization and biogenesis (GO:0007005), histone modification (GO:0016570), oxida-
tive phosphorylation (GO:0006119), and so on (see Table 4.3.3. As can be seen, many
of the negatively affected TIGOs are related to mitochondria, which may imply a lower
mitochondria metabolic rate in these mutants. The rate of energy generation and con-
sumption in the mutants may be reduced, because the aerobic respiration (GO:0009060),
the oxidative phosphorylation (GO:0006119), and the electron transport (GO:0006118)
categories are all negatively affected. In addition, the GO categories associated with

global transcription and translation are also negatively affected, which include GO
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categories that are related to transcription initiation from RNA polymerase II pro-
moter (GO:0006367), transcription from RNA polymerase III promoter (GO:0006383),
mRNA metabolism (GO:0006402), the mRNA-nucleus export (GO:0006406), process-
ing of 20S pre-rRNA (G0O:0030490) and translation initiation (GO:0006413). On the
other hand, the category associated with proteasome complex (GO:0000502), which
catalyzes protein degradation is also negatively affected. Therefore, we may expect
a low rate of gene transcription and protein translation, as well as a low rate of pro-
tein degradation in the long-lived mutants. Cells of long-lived mutants survive in an
economical style in comparison with the wild type. The low metabolic rates in these
mutants remind us about the similar features that appear in yeast cells under calorie
restriction (CR). Deletion of Sch9, Ras2 or Torl may imitate the responses to CR and
thereby extend the life span. Namely, the life span extension under CR may depend on
a mechanism in which SCH9, RAS?2, and TORI1 are involved.

When we compare sch9sir2/\ with sch9/\, the significantly affected TIGO cat-
egories are different from those in the four mutants (compared with wild type). As
known, deletion of Sch9 increases the life span by three fold. Double deletion of Sch9
and Sir2 extends the life span up to six fold, although single deletion of Sir2 cause no sig-
nificant change of life span. The difference in significantly affected TIGOs may imply
a different mechanism of further life span extension in the double mutant sch9sir2/A

with respect to single mutant sch9A.

4.3.4 Significantly affected pathways in the long-lived mutants

Despite the informativeness of GO categories, they are simply sets of genes with associ-
ated functions. For example, the biological process categories in GO are not equivalent
to pathways. As a matter of fact, GO does not try to represent the dynamics or dependen-

cies that would be required to fully describe a pathway. To investigate the mechanism
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Table 4.5: Positively and negatively affected pathways in the long-lived mutants. Sig-
nificant affected pathways (q-value<0.01) are shown in bold.

Positively affected pathways

sch9A/wt rasA/wt torA/wt sch9sir2 A/wt sch9sir2A/sch9A

Pathway

p-value q-value p-value q-value p-value q-value p-value q-value p-value gq-value
Starch and sucrose metabolism 0.58 0.82 0.0046  0.045 0.046 0.21 0.0032  0.035 4.4E-06 2.1E-04
N-Glycan biosynthesis 0.23 0.54 8.8E-05 0.0032 0.048 0.21 0.0052  0.046 7.4E-04 0.016
Glycolysis / Gluconeogenesis 0.0022  0.025 8.2E-07 4.8E-05 1.5E-04 0.0050 2.1E-05 8.7E-04 9.5E-04 0.018
Galactose metabolism 0.30 0.64 2.7E-04 0.0072 0.020 0.12 0.035 0.18 0.0014  0.023
Glycan structures - biosynthesis 0.026 0.15 1.8E-04 0.0052  0.030 0.16 0.0041  0.042 0.015 0.10
Fructose and mannose metabolism 0.0085  0.067 3.0E-04 0.0072 0.0050 0.045 0.0019  0.024 0.033 0.17
Ribosome 0 0 3.7E-15 2.7E-13 0 0 2.2E-16 2.2E-14 1.00 0.82

Negatively affected pathways

sch9A/wt rasA/wt torA/wt sch9sir2A/wt sch9sir2A/sch9A
Pathway p-value q-value p-value gq-value p-value gq-value p-value q-value p-value q-value
Basal transcription factors 1.8E-04 0.0042 1.6E-07 2.8E-05 1.7E-04 0.0042 1.9E-06 14E-04 1.9E-05 8.3E-04
Citrate cycle (TCA cycle) 3.3E-04 0.0073 0.0077 0.082 2.5E-05 9.3E-04 0.012 0.100 0.73 0.86
Oxidative phosphorylation 6.0E-06 3.6E-04 0.0041 0.054 2.7E-05 9.3E-04 0.0078  0.082 0.96 0.86
Proteasome 2.1E-03 0.034 1.8E-07 2.8E-05 0.0057 0.073 3.6E-05 0.0011 7.9E-05 0.0022
Ribosome 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86 1.0E-06 1.1E-04

SNARE interactions in vesicular transport  0.14 0.49 0.0035  0.048 0.40 0.78 0.0014  0.026 8.8E-06 4.5E-04

of longevity of the long-lived mutants, we analyze the difference between them and the
wild type from a pathway perspective. We downloaded 102 pathways of S.cerevisiae
from the KEGG database [0GG] and identified all the significantly changed pathways in
the mutants with respect to the wild type. Totally 7 pathways are positively affected and
6 pathways are negatively affected in at least one of the five comparisons: sch9A /wt,

ras2A Jwt, torlA/wt, and sch9sir2/\/sch9/\ (see Table 4.5).

Positively affected pathways

As shown in Table 4.5, the Glycolysis/Gluconeogenesis pathway is positively affected
in the four long-lived mutants with respect to the wild type. Glycolysis includes 10 reac-
tions occurring in the cytosol that converts glucose into pyruvate. In aerobic organism,
glycolysis is the prelude to the citric acid cycle (TCA) and the electron transport chain in
oxidative phosphorylation. The glycolytic pathway has a dual role: it degrades glucose
to generate ATP, and it provides building blocks for the synthesis of cellular compo-

nents. Gluconeogenesis is the synthesis of glucose from noncarbohydrate sources, such
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as lactate, amino acids, and glycerol. Our results suggest that genes involved in the Gly-
colysis/Gluconeogenesis pathway tend to be up-regulated in the mutants, which may
result in a enhancement of the cells to make use of glucose or other carbon sources.
Two other sugar related pathways, the galactose metabolism and the fructose and
mannose metabolism, are also positively affected in the long-lived mutants, though they
are affected as significantly as the Glycolysis/Gluconeogenesis pathway. The ribosome
pathway (not include mitochondria ribosomal subunits) is also positively affected, which

is consistent with our GO analysis.

Negatively affected pathways

In the long-lived mutants, TCA cycle and oxidative phosphorylation pathways are nega-
tively affected. The TCA cycle, also called citric cycle, is the final common pathway for
the oxidation of fuel molecules. It also serves as a source of building blocks for biosyn-
thesis. The TCA cycle operates only under aerobic conditions, because it requires a
supply of NAD™ and FAD, which are changed into NADH and FADH, after accepting
electrons. These electron acceptors are regenerated when NADH and FADH, transfer
their electrons to O, through the electron transport chain. In oxidative phosphoryla-
tion, the electron transport chain is coupled to the synthesis of ATP by a proton gradient
across the inner mitochondria membrane. Oxidative phosphorylation is the major source
of ATP in aerobic organisms. In yeast, the reaction of the TCA cycle and oxidative
phosphorylation occur inside the mitochondria, in contrast to those of glycolysis, which
occur in the cytosol. Under aerobic conditions, oxidative phosphorylation is efficient to
generate ATPs, but at the same time it produces the reactive oxygen species (ROS) as by
products, which is thought to be one of the causes of ageing. The repression of the two
pathways in the long-lived mutants may provide us some hints about the mechanism of

longevity of them.
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The basal transcription factors form a complex that acts as a general transcription
machine. Interestingly, we found that the complex is negatively affected, or down-
regulated in expression, in all of the long-lived mutants. This is also consistent with
the results obtained by GO analysis. The down-regulation of the basal transcription
factors may reflect the low metabolic rate in these mutants. The cells live a economical
life and thereby only a low basal transcription is required to maintain survival. Also,
proteasome, the complex in charge of protein degradation, is negatively affected in the

long-lived mutants.

4.3.5 Significantly affected cellular components in the long-lived

mutants

Table 4.6: Positively and Negatively affected Cellular organelles. Significant find-
ings (gq-value<0.01) are shown in bold.

Positively affected cellular organelles

sch9A/wt rasA/wt torA/wt sch9sir2 A/wt sch9sir2A/sch9A

Cellular Organelle

p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value
ER 4.2E-04 0.0033 0.0E+00 0.0E+00 3.7E-09 8.0E-08 3.1E-08 5.4E-07 5.0E-10 2.2E-08
vacuole 6.1E-05 5.8E-04 1.1E-09 3.2E-08 3.1E-06 3.5E-05 4.5E-07 6.5E-06 2.0E-04 0.0017
vacuolar membrane 0.0042  0.022 0.038 0.14 4.7E-04 0.0033 0.049 0.2 0.34 0.64
actin 0.0014  0.0080 0.32 0.62 9.4E-04 0.0058 0.046 0.1 0.66 0.78
endosome 0.040 0.14 0.66 0.78 7.5E-04 0.0050 04 0.7 0.96 0.78
punctate composite  0.083 0.24 0.66 0.78 0.0016 0.0085 0.4 0.7 0.89 0.78
cytoplasm 3.3E-06 3.5E-05 0.99 0.78 0.016 0.078 0.8 0.8 1.00 0.78
Negatively affected cellular organelles

sch9A/wt rasA/wt tor A/wt sch9sir2 A/wt sch9sir2A/sch9A

Cellular Organelle

p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value
mitochondrion 3.9E-37 1.6E-35 8.4E-29 14E-27 14E-43 1.1E-41 3.0E-24 3.5E-23 0.028 0.081
nucleus 9.3E-07 54E-06 3.5E-31 7.0E-30 9.1E-12 7.4E-11 1.5E-25 2.1E-24 1.2E-31 3.1E-30
nucleolus 5.1E-09 3.2E-08 4.6E-06 2.5E-05 1.1E-10 7.2E-10 2.1E-15 2.1E-14 1.2E-11 9.2E-11
cytoplasm 1.00 0.74 0.0080  0.028 0.98 0.74 0.19 0.36 5.6E-12 5.0E-11
bud neck 0.38 0.59 0.0032  0.014 0.30 0.52 0.0067  0.026 7.6E-05 3.8E-04
spindle pole 0.01 0.05 0.00 0.01 0.16 0.33 0.00 0.01 0.00 0.01

It is well known that some cellular organelles play important roles in biological pro-
cesses. For example, mitochondria is the organelle where TCA cycle and oxidative

phosphorylation occur and is highly associated with aging. This motivates us to think
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about such a question: genes localized in which organelles are more likely to be affected
in the long-lived mutant strains? Large-scale analysis of protein localization has been
performed in S.cerevisiae, which enables us to investigate this problem [HFGT03]. As
shown in Table 4.6, we identified the significantly affected organelles. Our results indi-
cate that ER-located and vacuole-located proteins are positively affected, while proteins
located in mitochondria, nucleus or nucleolus are negatively affected in all of the long-
lived mutants.

The endoplasmic reticulum is part of the endomembrane system, which modifies
proteins, makes macromolecules, and transfers substances throughout the cell. In bud-
ding yeast cells, vacuoles are the storage compartments of amino acids and the detoxifi-
cation compartments. Under conditions of starvation, proteins are degraded in vacuoles,
which is called autophagy. The up-regulations of vacuole-located proteins may implies
that autophagy in the cells of these long-lived mutants is enhanced to maintain survival
in low nutrient conditions, such as SDC medium.

A dominant role for the mitochondria is the production of ATP as reflected by the
large number of proteins in the inner membrane for this task. This is done by oxi-
dizing the major products of glycolysis: pyruvate and NADH that are produced in the
cytosol. This process of cellular respiration, also called aerobic respiration, is depen-
dant on the presence of oxygen. When oxygen is limited the glycolytic products will
be metabolized by anaerobic respiration, a process that is independent of the mitochon-
dria. The production of ATP from glucose has an approximately 15 fold higher yield
during aerobic respiration compared to anaerobic respiration. Our analysis shows that
mitochondrial proteins tend to be down-regulated in the transcription level. This may
reflect a switch from aerobic respiration to anaerobic respiration for energy. This is con-
sistent with previous results from pathway analysis: the Glycolysis/Gluoconeogenesis

pathway is positively affected, whereas the TCA cycle and oxidative phosphorylation
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are negatively affected. Additionally, proteins localized in nucleus or nucleolus tend to

be down-regulated, which is also a reflection of metabolic rate decrease.

4.3.6 Significantly affected transcription factors in the long-lived

mutants

Table 4.7: Positively and Negatively affected transcription factors. Significant find-
ings (g-value<0.01) are shown in bold.

Positively affected transcriptional factors

. sch9A/wt rasA/wt torA/wt sch9sir2 A/wt sch9sir2A/sch9A

Transcription

Factor p-value q-value p-value ¢-value p-value q-value p-value q-value p-value q-value
CINS 0.0082  0.074 6.9E-05 0.0019 0.0015 0.021 7.0E-06 3.2E-04 2.0E-04 0.0043
FHL1 0 0 3.2E-15 2.5E-13 0 0 0 0 1.00 0.79
HAPI1 0.89 0.79 0.34 0.57 0.92 0.79 0.042 0.18 14E-05 5.7E-04
INO4 1.00 0.79 0.97 0.79 0.92 0.79 0.92 0.79 1.1E-04 0.0027
MBP1 0.29 0.53 0.051 0.20 3.0E-05 0.0011  0.099 0.29 0.11 0.31
MET31 0.11 0.32 6.4E-05 0.0019 0.0053 0.054 0.80 0.79 0.98 0.79
NRG1 0.62 0.79 8.4E-04 0.015 0.077 0.26 5.9E-04 0.011 1.8E-05 6.8E-04
RAPI 0 0 59E-10 3.4E-08 0 0 4.0E-13 2.6E-11 0.93 0.79
SUMI1 0.88 0.79 0.17 0.40 0.045 0.19 0.073 0.25 4.8E-04 0.0093
SWI4 0.12 0.32 0.030 0.15 1.2E-04 0.0028 0.050 0.20 0.14 0.35
SWI5 0.0018  0.024 0.024 0.13 2.4E-04 0.0051 9.9E-04 0.016 0.24 0.49
SWI6 0.28 0.51 0.041 0.18 3.2E-05 0.0011 0.048 0.19 0.011 0.086
YAPS 0.0012  0.017 0.0035 0.043 7.9E-05 0.0020 0.0012 0.017 0.32 0.56
YAP6 0.039 0.18 1.1E-06 5.6E-05 9.6E-04 0.016 4.9E-05 0.0015 2.6E-04 0.0052

Negatively affected transcriptional factors

. sch9A/wt rasA/wt torA/wt sch9sir2 A/wt sch9sir2A/sch9A
Transcription
Factor p-value q-value p-value ¢-value p-value q-value p-value q-value p-value q-value
ABF1 0.0012  0.048 1.2E-06 1.8E-04 2.0E-06 1.8E-04 1.1E-04 0.0063 0.0037 0.10
ARGS80 0.0056  0.14 0.0055 0.14 2.0E-05 0.0013 0.013 0.23 0.31 0.79
GCN4 0.66 0.91 0.046 0.40 29E-08 7.8E-06 9.1E-06 6.9E-04 7.0E-10 3.8E-07
HAP4 1.8E-06 1.8E-04 6.8E-04 0.033 1.6E-06 1.8E-04 8.4E-04 0.037 0.68 091
INO4 1.3E-04 0.0067 0.034 0.33 0.076 0.47 0.076 0.47 1.00 0.91

In most cases, an external or internal signal will eventually be transmitted to one or a
set of transcription factors, and as a consequence gene expressions are change to respond
to the signal. If we can find out the transcription factors that cause the gene expression
changes in the long-lived mutants, it will be helpful to infer the underlying mechanism
of longevity. Unfortunately, gene expression in microarray data provides limited infor-
mation to detect the change of transcription factor activity. The reasons are as follows:

(1) The expression levels of transcription factors are relatively low. (2)The activities of
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transcription factor are prevalently regulated by post-translational modification, e.g. by
protein phosphorylation. As such, we apply an indirect strategy to find out the affected
transcription factors in these mutants by studying the expression change of genes reg-
ulated by those transcription factors. For a given transcription factor, if the expression
levels of its target genes are significantly up-regulated in comparison with the whole
transcriptome background, we conclude that the activity of this transcription factor is
enhanced. Conversely,if the expression levels of its target genes are significantly down-
regulated, we assume that the activity of this transcription factor is repressed. To deter-
mine the target gene set of a transcription factor, we use the TF-gene binding information
provided by the ChIP-Chip data. Large scale ChIP-Chip experiments have carried out
to systematically identify the binding sites of 203 transcription factors in S. cerevisiae
[HGL*"04]. Table 4.7 shows the transcription factors that are significantly activated or
inactivated in various comparisons. Note that FHL1 and RAP1 are significantly acti-
vated in all the 4 mutants: sch9/\, ras2/\, torl/\ and sch9sir2/\, relative to wild
type. This is consistent with what we expect, because we know that RAP1 and FHL1
are responsible for the regulation of ribosomal protein genes. In addition, we find that
SUML is significantly activated in sch9sir2/\ with respect to sch9/\. Previous studies
have shown that SUMI1 is a transcriptional repressor required for repression of middle
sporulation-specific genes during mitosis; and that a dominant mutation of SUMI1 is
able to suppress the silencing defects of SIR2 mutations [LR91, XPGD*99, FGB*05].
So the activation of SUMI, in sch9sir2/\ relative to sch9/\, may reflect a feedback in

response to Sir2 deletion.
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Table 4.8: Motifs enriched in up-regulated genes.Significant findings (q-value<0.01)
are shown in bold.

o sch9A/wt rasA/wt torA/wt sch9sir2 A/wt sch9sir2A/sch9A
Transcription

Consensus Sequence

Factor p-value q-value p-value q-value p-value q-value p-value q-value p-value q-value
RRTCACGTG- CBF1 0.36 0.24 4.2E-05 0.0028 0.13 0.14 0.10 0.12 0.64 0.33
RTGT-YGGRTG FHLI 9.3E-04 0.012 0.0042  0.024 1.7E-06 3.2E-04 4.2E-04 0.0074 0.42 0.26
AWAGGGAT GIS1 5.3E-05 0.0028 2.8E-04 0.0059 0.058 0.088 1.3E-05 0.0012 0.16 0.15
AMAA-TGTGG MET4 0.12 0.13 84E-06 9.5E-04 0.67 0.34 0.056 0.086 0.13 0.14
CGCATMCCCCAC  MIGI1 0.022 0.054 4.9E-04 0.0083 0.036 0.068 8.3E-04 0.011 0.082 0.11
AGGGG MSN2/4 1.3E-06 3.2E-04 1.1E-04 0.0038 5.6E-05 0.0028 1.4E-06 3.2E-04 0.16 0.15
GY-TSKCACGTG-G PHO4 0.0024 0.018 5.0E-05 0.0028 0.0016 0.016 0.0075  0.030 0.61 0.33
G-RGGGG-GGGG STRE 0.0014  0.015 0.045 0.077 0.0012 0.014 4.4E-04 0.0076 0.058 0.088
RYGWCASWAAW  SUMI 0.11 0.13 2.0E-04 0.0051 0.0050 0.026 0.0057  0.027 0.0011 0.014
ACCYT-AGGTT ZAP1 0.30 0.21 8.7E-04 0.012 0.56 0.31 2.5E-04 0.0057 5.5E-05 0.0028

4.3.7 Significantly enriched motifs in promoter regions of differen-

tially expressed genes

Although the transcription factor analysis based on ChIP-chip data provides us some
information about transcriptional regulation in these long-lived mutants, it has the fol-
lowing limitations: (1)The ChIP-chip experiments are performed using yeast cells at
log-phase in YPD (Yeast Peptone Dextrose) medium. However, our microarray experi-
ments are carried out using yeast cells collected at day 2.5 with SDC (Synthetic Dextrose
Complete) as medium. It is known that some transcription factors regulate different sets
of target genes in different cell stages or different conditions. So it may be inappropriate
to determine the target gene sets for some transcription factors according to the available
Chip-Chip data. (2) The binding information for some transcription factors are missed
in the ChIP-Chip data. For example, it has been known that RAS2/CYR1/PKA, TOR1
and SCH9 activate several transcription factors, such as MSN2/4 and GIS1. These tran-
scription factors regulate the expression of STRE/PDS controlled genes, in which many
are stress response genes [Lon03, REM™05]. However, the binding information for
GIS1 protein is not available in ChIP-chip data.

To overcome these limitations, we apply a systematic in-silicon analysis to identify
the motifs that are significantly enriched in the up-regulated or down-regulated gene set

for each mutant. Beer et al. identified 666 non-redundant motifs from 800bp upstream
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sequences of all genes in S.cerevisiae [BT04]. Among these motifs, 51 have known
binding transcription factors. To find out the transcription factors that are associated
with differentially expressed genes in sch9/A\, ras2/\, tor1/A\ and sch9sir2/\ mutants,
we analyze the enrichment of motifs in both up-regulated and down-regulated genes
in each mutant. Our results show that there is no motif enriched in the down-regulated
gene set for all the comparisons: sch9A Jwt,ras2/\ /wt, torlA Jwt, sch9sir2A Jwt and
sch9sir2/\ /sch9/\. Whereas in the up-regulated gene sets, we find some significantly
enriched motifs as shown in Table 4.8. It is notable that the motif bound by Gisl is
enriched in sch9A /wt, ras2A\ Jwt, sch9sir2/\ /wt comparisons, and MSN2/4a bind-
ing motif is enriched in sch9A Jwt, ras2A /wt, torlA/wt and sch9sir2A /wt com-
parisons. These results are consistent with previous knowledge about MSN2/4. Both
MSN2 and MSN4 are repressed by PKA, which is activated by Ras2 and Torl pro-
tein. Also we know that GIS|1 is activated by glucose-repressible protein kinase RIM15,
whose activity is inhibited by both PKA and SCH9 kinase [PDC*03]. Therefore the
mechanism of life span extension of sch9A, ras2/\, tor1/\ and sch9sir2/\ can at least
partially be explained by the activation of MSN2/4 and/or GIS1 in these mutants.

It should be noted that both MSN2 and MSN4 are condition altered transcription
factors according to Harbison et al’s paper [HGL*04]. Namely, they bind to different
sets of target genes in different conditions. Since the medium and cell phase used in our
study are different from those used in the ChIP-Chip experiments, we do not find the
activation of MSN2 or MSN4 using the ChIP-Chip based method. But we detect the
enrichment of MSN2/4 binding site in promoter regions of the up-regulated genes using

the motif analysis.
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4.4 Conclusions and discussions

4.4.1 Energy switch
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Figure 4.4: Box-plots of log ratios in the long-lived mutants. (A) sch9A /wt; (B)
ras2A jwt; (C) sch9sir2A/wt; (D) torlA/wt. ALL- all genes; GLY- Glycoly-
sis/Gluconeogenesis; TCA- citric acid cycle; OXP- oxidative phosphorylation; ATP-
ATP generation.

In the long-lived mutants, genes involved in Glycolysis/Gluconeogenesis tend to be

up-regulated; and genes that participate in TCA cycle and oxidative phosphorylation
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tend to be down-regulated. This interesting phenomenon is observed consistently in all
the four long-lived mutants and supported by both GO and pathway analysis as shown
in Figure 4.4. On one hand, the up-regulation of Glycolysis/Gluconeogenesis related
genes imply that cells from the mutants consume the carbon sources in a more efficient
and economical manner compared with the wild type. The change may be achieved
through a mechanism similar to the one in CR. In consistent with this hypothesis, a
recent study shows that calorie restriction of torlA or sch9A cells failed to further
increase of the life span [KPS*05]. On the other hand, the down-regulation of TCA
cycle and oxidative phosphorylation related genes indicates that mutant cells switch to
alternative energy pathways, possibly glycolysis, for energy. These pathways depend
less on TCA cycle and oxidative phosphorylation and consume less O,. Consequently,
it may also produce less ROS in comparison with the wild type cells.

Rea et al. proposed a metabolic model to describe the “Energy switch” hypothesis
for longevity mutants in C.elegans [RJ03]. According to their hypothesis, the relative
balance between TCA based mitochondrial-dependent metabolism and alternative path-
ways that do not involve the electron transport chain or are independent of the mitochon-
dria may determine the overall oxidant burden and hence the life span. In C.elegans,
alternative energy pathways include malate dismutation. Our results indicate that the
“energy switch” may be used to explain the long-lived mutations in S.cerevisiae. In
sch9A, torl A, ras2/\, and sch9sir2/\, the alternative energy pathway is likely to be
the glycolysis pathway that occurs in the cytosol. The energy switch in these long-lived
mutants, together with other effects, e.g. low metabolic rate and enhanced stress resis-

tance, may play important roles in life span extension.
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4.4.2 Stress resistance

Deletion of RAS2 or SCHO increases the stress resistance of yeast cells. MSN2/MSN4
and SOD2 are required for longevity extension in ras2/\, which suggests that
these stress response genes play important roles in longevity [LGV96, Lon03,

FLM™03]. Similarly, the life span extension by SCH9 deletion requires RIM15 but
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Figure 4.5: Sch9 and TOR signalling are subject to cAMP-gating in yeast. GTF stands
for general transcription complex. Arrows and bars refer to positive and negative interac-
tions. Dashed lines refer to potential cross-regulation. The figure is copied from Roosen
et al. (Molecular Microbiology, Vol.55, 862-880) with small revisions.
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not MSN2/MSN4 [FPPT01]. Our motif analysis suggests that two transcription fac-
tors, MSN2/MSN4 and GIS1, may function downstream of the pathway to regulate
the expression of stress response genes. As shown in Table 4.8, the motifs bound by
MSN2/MSN4 are significantly enriched in the up-regulated genes from all the four long-
lived mutants; the motifs bound by GIS1 are significantly enriched in the up-regulated
genes from all mutants except tor1/\ (the p-value is 0.058). Our results support the
model proposed by Roosen et al. [REM05]. As shown in Figure 4.5, a main gatekeeper,
the protein kinase PKA, switches on or off the activities and signals transmitted through
primary pathways such as SCH9 and TOR. SCH9 positively controls PDS-driven gene
expression mainly via GIS1 and RIM15. TOR and PKA control STRE-driven gene
expression mainly via MSN2/4 and RIM15. But cross-talks exist between the two path-
ways. Stress response genes, i.g. SOD?2, facilitate the removal of the endogenous ROS,
and enhance the stability of genome and mitochondria DNA. All these effects play pos-

itive roles in longevity.

4.4.3 Mitochondria and ageing

It has been 50 years since Harman first proposed the “free radical theory” of
aging[Har56]. According to this theory, reactive oxygen species (ROS) damage macro-
molecules and thereby accelerate ageing. The majority of cellular ROS (approximately
90%) is generated in mitochondria as a byproduct of oxidative phosphorylation dur-
ing respiration[BNFO5]. A number of mutation affecting respiration have been found
to increase life span, and at least some of them may achieve this by decreasing ROS
levels[Ken05]. We find that many of the down-regulated genes encode mitochondrial
proteins, and the expression levels of genes that encode proteins localized in mitochon-
dria tend to be negatively affected in the long-lived mutants. Consistently, in these

mutants, TCA and oxidative phosphorylation are negatively affected, both of which
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occur in the mitochondria. As a consequence, respiration is reduced to some extent and
thereby less ROS are produced. Our results suggest the importance of mitochondria in

yeast ageing.

4.4.4 Low metabolic rate

Both the GO and the pathway analysis imply a low metabolic rate in the long-lived
mutants. The basal transcription and translation are reduced by some extent. Cells
with mutants may survive in a more economical mode, which consumes less ATP and
possibly produces less harmful byproducts, such as ROS. As known, various organisms,
including yeast, live with low metabolic rate under CR conditions. The metabolic rate
reduction in the long-lived mutants with respect to the wild type again implies the strong

association of SCH9, TOR1 and RAS2 with CR.

4.4.5 Future works

In the future, we may study the gene expression in these mutants with a time course
experiment design. The time course gene expression data provides more abundant infor-
mation to infer the regulatory network during ageing process. It may help us to know
which phase is important for longevity. In C.elegants, treating worms with daf-2 RNAi
from the time of hatching extends life span and delays reproduction, but treating them
when they are young adults extends life span to the same extent with little or no effect on
reproduction [DCKO2]. This indicates that genes may function differently in different
stages. The time course experiments are able to provide information to achieve more
accurate and detail understanding about function of the ageing related genes.

In addition, we can study the interaction effects of ageing related genes. For exam-

ple, we can survey the double mutants of Fobl or Sir2 with Sch9, Torl, Ras2 etc. This
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will enable us to know whether these genes function independently or coordinately to

change life span.
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