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Tracks

• Predicted active promoters

• Predicted active enhancers

• High occupancy of TF (HOT) regions

• Low occupancy of TF (LOT) regions

* See comparison of features at these regions at 
the end of this set of slides
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Common properties (1)

• Based on datasets from the analysis (January 
2011) freeze

• Human genome build: hg19

• Cell-line specific

• Blacklist regions 
(http://www.ebi.ac.uk/~anshul/public/encodeRawData/blacklists/wgEnco

deHg19ConsensusSignalArtifactRegions.bed.gz) filtered in all 
analyses

• Gene annotations based on Gencode v.3c 
levels 1 and 2
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http://www.ebi.ac.uk/~anshul/public/encodeRawData/blacklists/wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz
http://www.ebi.ac.uk/~anshul/public/encodeRawData/blacklists/wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz


Common properties (2)

• Considered cell lines with binding data for at 
least 20 TFs

– GM12878, H1-hESC, HeLa-S3, HepG2, K562

• TF peaks called by PeakSeq, using “optimal” 
setting
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PREDICTED ACTIVE PROMOTERS
Track #1
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Goal

• Setup a standard procedure for calling 
extended promoters
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Strategies

• Instead of using fixed annotations or defining 
rules, we learned features of active promoters 
based on a conservative set of positive examples 
and multiple sets of negative examples with 
different properties

• Using these examples, we built statistical models 
that tell the likelihood of a region being an active 
promoter based on its open chromatin, histone
modifications and TF binding features
– Expected the examples to contain errors  the 

learning methods were allowed to not trust examples 
that appear different from the others
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Methods (1)

• Divided the whole genome into 100bp bins

• Defined the example sets:
– Positives: Bins within 100bp upstream from an 

expressed Gencode TSS (RPM > 1)

– Negatives: equal number of
1. Bins not within TF binding peaks (for learning the 

differences between binding and non-binding regions)

2. Non-Pol2 TF binding bins at least 10,000bp away from any 
transcript (for learning the differences between promoter 
and non-promoter TF binding regions)

3. Non-TF binding bins within +/- 5,000bp from the TSS of a 
transcript (to avoid the learning algorithm to use open 
chromatin as the only feature for identifying promoters)
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Methods (2)

• Model training:

– Examples: 5,000 random positive and 5,000 
random negative

– Features: all open chromatin, histone
modifications and TF binding datasets of a cell line

– Learners: Bayes net, linear regression, random 
forest, support vector machines (SVM)
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Methods (3)

• Model evaluation:
– Area under receiver operator characteristics 

(AUROC) and precision-recall (AUPR) curves for 
hold-out non-training examples in the example 
sets

– Repeated 10 times and take average

• Model selection:
– Selected the learner with the highest AUROC

• Model application:
– Predicted an “active promoter score” for each bin 

in the whole genome using the selected learner
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Methods (4)

• Calling active promoters:

– 1% “FDR” threshold: 1% of the negative hold-out 
examples had a predicted active promoter score 
larger than the threshold

– Used the threshold to find all potential active 
promoters in the whole genome

– Filter out bins with a phastCons primate score < 
0.1

– Merge adjacent bins
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Results – holdout AUROC and AUPR

• Selected learner: random forest
• AUROC and AUPR are not direct measures of prediction accuracy, since

– The positive and negative sets likely contain errors
– The positive examples are only the most conservative ones
But a good AUROC/AUPR does indicate that a good model can be constructed, 
using the open chromatin, histone modification and TF binding features, to 
distinguish between the positive and negative examples
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Results – distribution of active promoter scores

• Clear separation of positive and negative examples
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Results – thresholds, recalls and counts

GM12878 H1-hESC HeLa-S3 HepG2 K562

Score threshold at 1% “FDR” 0.76 0.85 0.78 0.82 0.76

“Recall rate” (fraction of pos.  
hold-out examples with 
predicted score > threshold)

0.70 0.59 0.65 0.65 0.67

#Predicted active promoter 
100-bp bins in whole genome 
before conservation filtering

613,929 290,720 430,846 324,504 556,713

#Predicted active promoter 
100-bp bins in whole genome 
after conservation filtering

265,139 137,901 202,616 155,517 251,383

#Predicted active promoter 
regions by merging adjacent 
bins

111,763 51,233 84,694 62,652 105,541
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Results – version 1.0 vs. 1.1

Version 1.0  1.1

• FDR: 5%  1%
• Pol2: used to define examples  used as features
• Conservation: added phastCons mammals filter
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Results – version 1.0 vs. 1.1

Version 1.0  1.1

• FDR: 5%  1%
• Pol2: used to define examples  used as features
• Conservation: added phastCons mammals filter
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Files provided

• PredictedActivePromoters_<cell line>.bed

– <cell line>: {Gm12878, H1hesc, Helas3, Hepg2, 
K562}
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Things to be done in future versions

• Increase prediction resolution (100bp for 
current version)

• Anshul’s shape analysis

• Max-gap-min-run type of bin merging

• Predict high-GC and low-GC promoters 
separately

• High confidence vs. high coverage sets
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PREDICTED ACTIVE ENHANCERS
Track #2
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Strategies

• Since there are no large-scale gold-standard 
examples, we used a step-by-step filtering of 
regions unlikely to be active enhancers (or 
possibly also other elements):
– Not within binding active regions

– Within CTCF binding peaks

– Within potential promoter regions

– Within exons

– Have low conservation

• H3K4me1, H3K27ac and p300 were only used to 
check resulting predictions
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Methods (1)
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Methods (2)

• Binding active regions (BAR):

– Used a procedure similar to the one for promoter 
prediction

– Positive examples: TF binding bins

– Negative examples: non-TF binding bins

– Features: open chromatin and histone
modification signals
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Results - counts
GM12878 H1-hESC HeLa-S3 Hep-G2 K562

#Bins after step 0 
(binning)

30,956,951

#Bins after step 1 
(blacklist)

30,840,721

#Bins after step 2 
(BAR)

1,041,102 712,156 819,967 827,509 923,811

#Bins after step 3 
(promoters)

528,559 363,937 472,452 442,136 506,118

#Bins after step 4 
(exons)

506,608 331,725 457,156 424,643 481,343

#Bins after step 5 
(conservation)

204,867 146,776 191,657 170,151 191,655

#Regions after step 6 
(merging)

118,398 80,352 101,196 94,323 107,172
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Files provided

• PredictedActiveEnhancers_<cell line>.bed

– <cell line>: {Gm12878, H1hesc, Helas3, Hepg2, 
K562}

24



Things to be done in future versions

• Merge with Anshul’s list

• Increase prediction resolution (100bp for 
current version)

• Perform motif and shape analyses

• Define high-confidence and high-coverage sets

• Filter CTCF binding sites (?)
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HIGH AND LOW TF OCCUPANCY 
REGIONS

Tracks #3,#4
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Methods (1)

• For each of the five cell lines

– Obtained the binding peaks of each TF

• If there were multiple datasets for one TF (due to 
different labs/antibodies, etc.), took their union

– For each base pair, counted the number of TFs 
with a binding peak covering it

– Merged adjacent base pairs with the same 
number of TF peak count
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Methods (2)

– A high TF occupancy (HOT) region is defined as a 
region with length  l1 bp with each base pair 
covered by binding peaks of  n1 TFs

– A low TF occupancy (LOT) region is defined as a 
region with length  l2 bp with each base pair 
covered by binding peaks of  n2 TFs
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Illustration
• l1=2, n1=2, l2=3, n2=0
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0Genomic positions 1 2 3 4 5 6 7 8 9

TF1 peaks

TF2 peaks

TF3 peaks

TF4 peaks

TF peak counts 2 4 3 0 3 3 1 0 0 0

High TF occupancy regions

Low TF occupancy regions

Merged regions 2 4 3 0 3 1 0

l1=2, n1=2

l2=3, n2=0



Results - histograms

• Whole genome
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Results - histograms

• Distal regions (>10,000bp from known transcripts)
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Files provided

1. Merged region files

– TFCounts_<cell line>_<region>.bed

• <cell line>: {Gm12878, H1hesc, Helas3, Hepg2, K562}

• <region>: {all, distal}

• The score field contains the TF count

2. HOT and LOT files

– l1=500, n1=30% total number of TFs with binding 
data, l2=100,000, n2=0

– <track>_<cell line>_<region>.bed

• <track>: {HOT, LOT}
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Things to be done in future versions

• Evaluate statistical significance of HOT and 
LOT regions (working with Ben Brown, Nathan 
Boley and Peter Bickel on it)

• Remove potential active promoter regions 
from the distal regions
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FEATURE VALUE DISTRIBUTIONS
Track comparisons
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GM12878
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H1-hESC
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HeLa-S3
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HepG2
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K562
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Summary (1)

• Predicted active promoters:

– Strong signals from DNase, FAIRE, H2A.Z, 
H3K4me2, H3K4me3, H3K9ac, H3K27ac, 
H3K36me3, P300, Pol2 and some TFs (e.g., Gabp)

• Predicted active enhancers:

– Strong signals from DNase, FAIRE, H2A.Z, 
H3K4me1, H3K27ac (but not as strong as 
promoters), P300 and some TFs (e.g., Gata2 and 
Jund)
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Summary (2)

• HOT regions:

– Stronger signals than other regions from most 
experiments, except for H3K9me1, H3K9me3, 
H3K27me3, H3K36me3 and H4K20me1

• LOT regions:

– Lower signals than all other regions from most 
experiments, except for H3K9me3 and H3K27me3
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Selected examples (from GM12878)
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Comments and suggestions
are welcome

yuklap.yip@yale.edu
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